|
Mine Engineering 2024
煤矿用五吨乳化液葫芦的机械结构件研制
|
Abstract:
本文论述了一种煤矿用乳化液葫芦的机械装置,葫芦靠乳化液马达驱动,马达所需工作介质为乳化液,具有防火、防爆、可直接连接煤矿井下泵源等优点。马达输出轴连三级定轴齿轮传动减速机构,使葫芦输出合适的扭矩和转速;齿轮减速机构设置合理的背隙,从而控制传动阻力矩和启动噪音;齿轮需要做必要的表面热处理,从而提高齿轮强度和寿命。在第一、二级齿轮传动副之间设置棘轮、棘爪结构作为制动单元,实现乳化液葫芦的机械制动。减速机构输出端通过矩形花键的方式与环链式链轮连接,链轮正反转实现了链条的上下运动,链条上设置有带链轮的下吊钩,构成动滑轮式的双链结构,实现对重物的提升和下降。经ANSYS静力学分析计算,葫芦主承载件具备一定的安全系数,试验验证满足强度要求。
This paper describes the mechanical structure of an emulsion hoist used in coal mine. The hoist is driven by the emulsion motor, and the working medium of the motor is the emulsion. It has the advantages of fireproof, explosion-proof and easy connection to the pump source in coal mine. The motor output shaft is connected with the three-stage fixed shaft gear drive reducer to make the hoist output appropriate torque and speed. The gear reduction mechanism is set with reasonable back backlash to control the transmission resistance moment and starting noise. Gears need the necessary surface heat treatment to improve gear strength and life. To realize the mechanical braking of the emulsion hoist, a structure of ratchet and pawl is arranged between the first and second gear transmission pairs as the braking unit. The output end of the decelerating mechanism is connected with the ring chain sprocket by means of a rectangular spline. The sprocket turns positively and negatively to realize the up and down movement of the chain. The chain is provided with the lower hook with a sprocket to form a double-chain structure of the movable pulley construction, so the heavy objects can be lifted and lowered. Through ANSYS static analysis and calculation, the main bearing part of the hoist has a certain safety factor, and the test verifies that it meets the strength requirements.
[1] | 张奎. 双向提升手拉葫芦[Z]. 浙江省, 浙江双鸟机械有限公司, 2016-11-12. |
[2] | 王海勇. 手拉葫芦齿轮参数的合理设计[J]. 起重运输机械, 2003(11): 17-20. |
[3] | 王凤喜. 手拉葫芦发展概况[J]. 建筑机械, 1994(3): 34-39. |
[4] | 阳廷军. ZRS20-50/370手持式乳化液钻机的设计研究[J]. 煤矿机械, 2013, 34(4): 17-18. |
[5] | 河北煤炭科学研究所. MT/T 884-2000, 煤矿用液压葫芦[S]. 北京: 国家煤炭工业局, 2000-12-08. |
[6] | 周如林, 黄园月, 王统诚. 高水基乳化液马达的结构分析与应用[J]. 煤矿机械, 2019, 40(12): 113-115. |
[7] | 王军宁, 张丽华. 非圆行星齿轮乳化液马达及其展望[J]. 机械工程师, 2010(2): 121-123. |
[8] | 栾振辉, 李毅华. 基于乳化液的齿轮马达设计[J]. 液压与气动, 2006(7): 81-82. |
[9] | 栾振辉, 孟庆虎. 同步齿轮马达在乳化液煤层液压钻中的应用[J]. 煤炭科学技术, 2004(6): 9-11. |
[10] | 郭俊明, 郝兴明. 乳化液马达的研究[J]. 太原工业大学学报, 1996(3): 66-70+111-112. |
[11] | 付海峰, 李俏, 徐跃明. 重载齿轮热处理及应用[J]. 金属热处理, 2020, 45(3): 178-185. |