|
Mine Engineering 2024
二氧化碳驱替甲烷过程中煤层气增产效果、储层渗透率的数值模拟分析
|
Abstract:
二氧化碳驱替煤层甲烷可以提高煤层气的采收率,有效利用煤层资源,减少二氧化碳排放和减少温室气体的影响,具有环保和经济双重效益。为了调查CO2强化煤层气的采收效率,本文采用数值模拟的方法,基于Fick扩散定律、Darcy渗流定律和扩展朗格缪尔等方程,利用Comsol Multiphysics软件模拟分析了不同二氧化碳注气压力、注入井与生产井间距对二氧化碳驱替甲烷的影响。研究表明注CO2对提高CH4累计产出量具有积极的作用,注气压为4 MPa、6 MPa时的CH4的产出量较2 MPa增长250%、351.92%。随着时间的抽采,生产井附近CH4浓度最后均趋于一定值,抽采1800 d时,注入井与生产井两井孔水平间距为50 m时甲烷累计生产量最高,50 m为最优间距。生产井附近的压力主要由卸压作用决定,卸压降低了煤层的吸附能力和煤层的吸附变形,使煤层的孔隙度变大,导致煤层的渗透率高于初始渗透率,注入井煤层中CO2与CH4的竞争吸附作用引起煤体的膨胀和变形,降低了煤储层孔隙度进而降低其渗透率。
Carbon dioxide displacement of coalbed methane can improve the recovery rate of coalbed methane, effectively utilize coal seam resources, reduce carbon dioxide emissions, and reduce the impact of greenhouse gases, with dual benefits of environmental protection and economy. In order to investigate the recovery efficiency of coalbed methane during CO2-ECBM, the original text will use numerical simulation methods, based on Darcy flow, Fick diffusion, and extended Langmuir equations, and use Comsol Multiphysics software to simulate and analyze the effects of different carbon dioxide injection pressures and the spacing between injection wells and production wells on carbon dioxide displacement of methane. Research has shown that CO2 injection has a positive effect on increasing the cumulative production of CH4, with CH4 production at 4 MPa and 6 MPa increasing by 250% and 351.92% compared to 2 MPa. With different spacing between two wells, the CH4 concentration near the production well eventually tends to a certain value over time. When pumping for 1800 days, the cumulative methane production is highest when the horizontal spacing between the two wells is 50 meters, which is the optimal spacing. The pressure near the production well is mainly determined by the pressure relief effect, which reduces the adsorption capacity of the coal seam, thereby reducing the adsorption deformation of the coal seam, increasing the porosity of the coal seam, and causing the permeability of the coal seam to be higher than the initial permeability. For gas injection wells, the competitive adsorption effect of CO2 and CH4 will cause the expansion and deformation of the coal body, reduce the porosity of the coal reservoir, and thus reduce its permeability.
[1] | 张琨. 超临界CO2-H2O-煤岩反应体系影响下煤储层孔裂隙结构演化特征[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2018. |
[2] | 武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(6): 1625-1636. |
[3] | 程远平, 付建华, 俞启香. 中国煤矿瓦斯抽采技术的发展[J]. 采矿与安全工程学报, 2009, 26(2): 127-139. |
[4] | 王永康. 注二氧化碳驱替甲烷实验及数值模拟分析[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2017. |
[5] | 宋新民, 王峰, 马德胜, 等. 中国石油二氧化碳捕集、驱油与埋存技术进展及展望[J]. 石油勘探与开发, 2023, 50(1): 206-218. |
[6] | 徐凤银, 侯伟, 熊先钺, 等. 中国煤层气产业现状与发展战略[J]. 石油勘探与开发, 2023, 50(4): 669-682. |
[7] | 桑树勋, 刘世奇, 韩思杰, 等. 中国煤炭甲烷管控与减排潜力[J]. 煤田地质与勘探, 2023, 51(1): 159-175. |
[8] | Liu, S., Sang, S., Ma, J., Wang, T., Du, Y. and Fang, H. (2019) Effects of Supercritical CO2 on Micropores in Bituminous and Anthracite Coal. Fuel, 242, 96-108. https://doi.org/10.1016/j.fuel.2019.01.008 |
[9] | 杜艺, 桑树勋, 王文峰. 超临界CO2注入煤岩地球化学效应研究评述[J]. 煤炭科学技术, 2018, 46(3): 10-18. |
[10] | Fulton, P., Parente, C., Rogers, B., Shah, N. and Reznik, A.A. (1980). A Laboratory Investigation of Enhanced Recovery of Methane from Coal by Carbon Dioxide Injection. Proceedings of SPE Unconventional Gas Recovery Symposium, Pittsburgh, May 1980, SPE-8930-MS. https://doi.org/10.2523/8930-ms |
[11] | Clarkson, C.R. (2003) Application of a New Multicomponent Gas Adsorption Model to Coal Gas Adsorption Systems. SPE Journal, 8, 236-251. https://doi.org/10.2118/78146-pa |
[12] | 唐书恒, 汤达祯, 杨起. 二元气体等温吸附实验及其对煤层甲烷开发的意义[J]. 地球科学, 2004(2): 219-223. |
[13] | 孙可明. 煤层气注气开采多组分流体扩散模型数值模拟[J]. 辽宁工程技术大学学报, 2005(3): 305-308. |
[14] | 吴嗣跃, 郑爱玲. 注气驱替煤层气的三维多组分流动模型[J]. 天然气地球科学, 2007, 18(4): 581-583. |
[15] | Fitzgerald, J.E., Robinson, R.L. and Gasem, K.A.M. (2006) Modeling High-Pressure Adsorption of Gas Mixtures on Activated Carbon and Coal Using a Simplified Local-Density Model. Langmuir, 22, 9610-9618. https://doi.org/10.1021/la060898r |
[16] | Dutta, P., Harpalani, S. and Prusty, B. (2008) Modeling of CO2 Sorption on Coal. Fuel, 87, 2023-2036. https://doi.org/10.1016/j.fuel.2007.12.015 |
[17] | Harpalani, S., Prusty, B.K. and Dutta, P. (2006) Methane/CO2 Sorption Modeling for Coalbed Methane Production and CO2 Sequestration. Energy & Fuels, 20, 1591-1599. https://doi.org/10.1021/ef050434l |
[18] | Schroeder, K., Busch, A., Duffy, G., et al. (2003) Interlaboratory Comparison of CO2 Adsorption Isotherms on Coals. Pittsburgh Coal Conference Pittsburgh Coal Conference, Pittsburgh, 15-19 September 2003, 10 p. |
[19] | Day, S., Fry, R., Sakurovs, R. and Weir, S. (2010) Swelling of Coals by Supercritical Gases and Its Relationship to Sorption. Energy & Fuels, 24, 2777-2783. https://doi.org/10.1021/ef901588h |
[20] | Fan, Y., Deng, C., Zhang, X., Li, F., Wang, X. and Qiao, L. (2018) Numerical Study of CO2-Enhanced Coalbed Methane Recovery. International Journal of Greenhouse Gas Control, 76, 12-23. https://doi.org/10.1016/j.ijggc.2018.06.016 |
[21] | 尹光志, 李铭辉, 李生舟, 等. 基于含瓦斯煤岩固气耦合模型的钻孔抽采瓦斯三维数值模拟[J]. 煤炭学报, 2013, 38(4): 535-541. |
[22] | Kong, X., Wang, E., Liu, Q., Li, Z., Li, D., Cao, Z., et al. (2017) Dynamic Permeability and Porosity Evolution of Coal Seam Rich in CBM Based on the Flow-Solid Coupling Theory. Journal of Natural Gas Science and Engineering, 40, 61-71. https://doi.org/10.1016/j.jngse.2017.02.011 |
[23] | 陶云奇, 许江, 程明俊, 等. 含瓦斯煤渗透率理论分析与试验研究[J]. 岩石力学与工程学报, 2009, 28(S2): 3363-3370. |
[24] | Wang, G., Wang, K., Jiang, Y. and Wang, S. (2018) Reservoir Permeability Evolution during the Process of CO2-Enhanced Coalbed Methane Recovery. Energies, 11, Article No. 2996. https://doi.org/10.3390/en11112996 |
[25] | Wang, G., Wang, K., Wang, S., Elsworth, D. and Jiang, Y. (2018) An Improved Permeability Evolution Model and Its Application in Fractured Sorbing Media. Journal of Natural Gas Science and Engineering, 56, 222-232. https://doi.org/10.1016/j.jngse.2018.05.038 |
[26] | Fang, H., Sang, S. and Liu, S. (2019) The Coupling Mechanism of the Thermal-Hydraulic-Mechanical Fields in Ch4-Bearing Coal and Its Application in the CO2-Enhanced Coalbed Methane Recovery. Journal of Petroleum Science and Engineering, 181, Article ID: 106177. https://doi.org/10.1016/j.petrol.2019.06.041 |
[27] | Shi, J., Mazumder, S., Wolf, K. and Durucan, S. (2008) Competitive Methane Desorption by Supercritical CO2 Injection in Coal. Transport in Porous Media, 75, 35-54. https://doi.org/10.1007/s11242-008-9209-9 |
[28] | Meng, M., Qiu, Z., Zhong, R., Liu, Z., Liu, Y. and Chen, P. (2019) Adsorption Characteristics of Supercritical CO2/CH4 on Different Types of Coal and a Machine Learning Approach. Chemical Engineering Journal, 368, 847-864. https://doi.org/10.1016/j.cej.2019.03.008 |
[29] | 刘世奇, 方辉煌, 桑树勋, 等. 基于多物理场耦合求解的煤层CO2-ECBM数值模拟研究[J]. 煤炭科学技术, 2019, 47(9): 51-59. |