全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

随采地震模拟数据脉冲化处理研究
Study on Pulse Processing of Seismic Simulation Data with Mining

DOI: 10.12677/me.2024.123059, PP. 475-482

Keywords: 随采地震,有限差分,二维数值模拟,脉冲化处理
Mining-Induced Earthquake
, Finite Difference, 2-D Numerical Simulation, Pulse Processing

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于随采地震超前探技术实际模拟和理论波场分析较少,随采震源有效信号的提取方法还需要做全面的研究。本文利用交错网格有限差分方法进行二维数值模拟,并利用互相关和反褶积两种干涉方法进行随采连续数据的脉冲化处理。研究结果表明:在随采地震的二维数值模拟中,互相关干涉与反褶积干涉都能将连续随采数据进行脉冲化处理,平行方向x与垂直方向y分量的地震波发育存在差异,x分量地震波整体连续性较好,但产生的反射波不明显,绕射波波组的能量不强。y分量震源一侧能量较弱,但反射波明显,绕射波波组能量较强。经过脉冲化处理的随采数据可有效指导采煤生产,为煤矿井下采煤智能化发展提供技术支撑。
The practical simulation and theoretical wave field analysis of mining seismic advance exploration technology indicate the need for comprehensive study on the extraction method of effective signal from mining sources. In this study, a two-dimensional numerical simulation is conducted using the staggered grid finite difference method, and pulse processing of continuous data with sampling is performed using cross-correlation and deconvolution interference methods. The results demonstrate that both cross-correlation interferometry and deconvolution interferometry are capable of pulsing the continuous data. It is observed that there are differences in the development of parallel x and vertical y component seismic waves. The overall continuity of x component seismic waves is satisfactory, but reflected waves produced by x component seismic waves are not prominent, and the energy of diffraction wave group is not strong. On the other hand, the energy on the source side of y component is weak, but reflected waves are noticeable, and the diffraction wave group is strong. Data with pulse processing can effectively guide coal mining production and provide technical support for intelligent development in underground coal mining.

References

[1]  Buchanan, D.J., Mason, I.M. and Davis, R. (1980) The Coal Cutter as a Seismic Source in Channel Wave Exploration. IEEE Transactions on Geoscience and Remote Sensing, 18, 318-320.
https://doi.org/10.1109/tgrs.1980.350308
[2]  Westman, E.C., Haramy, K.Y. and Rock, A.D. (1996) Seismic Tomography for Long-Wall Stress Analysis. Colorado School of Mines, Golden, 397-403.
[3]  Westman, E.C., Heasley, K.A., Swanson, P.L., et al. (2001) A Correlation between Seismic Tomography, Seismic Events and Support Pressure. ARMA US Rock Mechanics/Geomechanics Symposium, Washington DC, July 2001, ARMA-01-0319.
[4]  Taylor, N., Merriam, J., Gendzwill, D. and Prugger, A. (2001) The Mining Machine as a Seismic Source for In‐Seam Reflection Mapping. In: SEG Technical Program Expanded Abstracts 2001, Society of Exploration Geophysicists, Houston, 1365-1368.
https://doi.org/10.1190/1.1816352
[5]  Petronio, L. and Poletto, F. (2002) Seismic‐While‐Drilling by Using Tunnel Boring Machine Noise. Geophysics, 67, 1798-1809.
https://doi.org/10.1190/1.1527080
[6]  Luo, X., King, A. and de Werken, M.V. (2007) Roof Condition Monitoring Ahead of a Longwall Face: Phase 1-Initial Assessment and Experimental Trials.
[7]  Luo, X., King, A. and Van de Werken, M. (2008) Sensing Roof Conditions Ahead of a Longwall Mining Using the Shearer as a Seismic Source. IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, 7-11 July 2008, IV-17-IV-20.
https://doi.org/10.1109/igarss.2008.4779645
[8]  King, A. and Luo, X. (2009) Methodology for Tomographic Imaging Ahead of Mining Using the Shearer as a Seismic Source. Geophysics, 74, M1-M8.
https://doi.org/10.1190/1.3074334
[9]  Luo, X., King, A. and Van de Werken, M. (2009) Tomographic Imaging of Rock Conditions Ahead of Mining Using the Shearer as a Seismic Source—A Feasibility Study. IEEE Transactions on Geoscience and Remote Sensing, 47, 3671-3678.
https://doi.org/10.1109/tgrs.2009.2018445
[10]  Tarantola, A. (2005) Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics, Philadelphia.
https://doi.org/10.1137/1.9780898717921
[11]  Lu, B., Cheng, J., Hu, J. and Qin, S. (2011) Seismic Features of Vibration Induced by Mining Machines and Feasibility to Be Seismic Sources. Procedia Earth and Planetary Science, 3, 76-85.
https://doi.org/10.1016/j.proeps.2011.09.068
[12]  陆斌, 程建远, 胡继武, 等. 采煤机震源有效信号提取及初步应用[J]. 煤炭学报, 2013, 38(12): 2202-2207.
[13]  覃思, 程建远. 煤矿井下随采地震反射波勘探试验研究[J]. 煤炭科学技术, 2015, 43(1): 116-119.
[14]  覃思. 随采地震井-地联合超前探测的试验研究[J]. 煤田地质与勘探, 2016, 44(6): 148-151.
[15]  陆斌. 基于地震干涉的回采工作面随采地震成像方法[J]. 煤田地质与勘探, 2016, 44(6): 142-147.
[16]  程建远, 覃思, 陆斌, 等. 煤矿井下随采地震探测技术发展综述[J]. 煤田地质与勘探, 2019, 47(3): 1-9.
[17]  金丹. 综采工作面随采地震的采煤机震源模拟[J]. 煤田地质与勘探, 2019, 47(3): 15-19, 24.
[18]  刘强. 随采地震噪声衰减研究[J]. 煤田地质与勘探, 2019, 47(3): 25-28, 34.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133