全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于PSO-PLS煤泥浮选加药量预测模型
A PSO-PLS Based Prediction Model for Reagent Dosage in Coal Slime Flotation

DOI: 10.12677/hjcet.2024.144035, PP. 326-343

Keywords: 浮选,起泡剂,捕收剂,PSO,PLS
Flotation
, Frother, Collector, PSO, PLS

Full-Text   Cite this paper   Add to My Lib

Abstract:

煤泥浮选药剂添加量的精确控制对浮选效果至关重要,是智能浮选的重要因素,也是近几年浮选智能科研工作者的研究课题。药剂量添加不当会导致浮选精煤灰分存在较大波动。影响浮选药剂添加量的因素众多,本文考虑入料浓度、入料流量、补水量、精煤灰分和尾煤灰分这五种因素对煤泥浮选药剂添加量的影响,提出了一种基于粒子群优化(PSO)偏最小二乘(PLS)算法的煤泥浮选起泡剂和捕收剂加药量预测模型。通过对比PCA、PLS和PSO-PLS三种算法的预测效果,发现PSO-PLS模型在预测精度和稳健性上表现优异,均方差、均方根误差、平均绝对百分比误差显著低于前两者,捕收剂预测R2值达到0.7863,起泡剂预测R2值达到0.8320,表明其拟合效果良好。实验证明,PSO-PLS算法能够准确预测浮选药剂添加量,有助于实现选煤厂浮选加药过程的智能化,为进一步选煤厂智能化建设提供了技术支持。
Precise control of reagent addition in coal slime flotation is crucial for achieving optimal flotation performance. It is a key factor in intelligent flotation and has been a research focus for flotation intelligence researchers in recent years. Improper reagent addition can lead to significant fluctuations in the ash content of the flotation concentrate. Many factors influence the amount of reagent added, including feed concentration, feed flow rate, added water volume, concentrate ash content, and tailings ash content. This paper proposes a predictive model for the addition of frothers and collectors in coal slime flotation based on the Particle Swarm Optimization (PSO) and Partial Least Squares (PLS) algorithms. By comparing the predictive performance of PCA, PLS, and PSO-PLS algorithms, it was found that the PSO-PLS model excels in prediction accuracy and robustness, with significantly lower mean square error, root mean square error, and mean absolute percentage error compared to the other two methods. The R2 value for collector prediction reached 0.7863, and for frother prediction, it reached 0.8320, indicating good fitting performance. Experiments demonstrate that the PSO-PLS algorithm can accurately predict reagent addition, aiding in the intelligent reagent dosing process in coal preparation plants and providing technical support for further intelligent construction of coal preparation plants.

References

[1]  陈晓天. 基于智能加药的煤泥浮选控制系统研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2017.
[2]  张孝逐. 浮选智能加药系统的设计与研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2018.
[3]  桂卫华, 阳春华, 徐德刚, 等. 基于机器视觉的矿物浮选过程监控技术研究进展[J]. 自动化学报, 2013, 39(11): 1879-1888.
[4]  王明嘉. 选矿浮选流程的现代化升级改造研究[J]. 矿山工程, 2020, 8(1): 24-29.
https://doi.org/10.12677/ME.2020.81004
[5]  张路. 煤泥浮选智能加药控制系统的研究[J]. 机械工程与自动化, 2021(3): 153-155.
[6]  Szmigiel, A., Apel, D.B., Skrzypkowski, K., Wojtecki, L. and Pu, Y. (2024) Advancements in Machine Learning for Optimal Performance in Flotation Processes: A Review. Minerals, 14, Article 331.
https://doi.org/10.3390/min14040331
[7]  郭西进, 邵辉, 王广胜, 等. 基于GA-BP神经网络的浮选加药量预测[J]. 煤炭工程, 2017, 49(2): 106-108.
[8]  张涛, 隋广武. 浮选工艺参数自动监测及加药系统的研发[J]. 煤炭加工与综合利用, 2016(7): 27-29, 32.
[9]  王伟. 基于泡沫尺寸分布的铜粗选过程加药量预测控制[D]: [硕士学位论文]. 长沙: 中南大学, 2014.
[10]  李希, 胡文静, 刘浪, 等. 基于生成对抗网络的浮选加药过程建模[J]. 湖南理工学院学报(自然科学版), 2021, 34(3): 1-8.
[11]  魏凌敖. 基于机器视觉的煤泥浮选加药控制系统研究[D]: [硕士学位论文]. 徐州: 中国矿业大学, 2020.
[12]  张进, 廖一鹏, 陈诗媛, 等. 基于多尺度CNN特征及RAE-KELM的浮选加药状态识别[J]. 激光与光电子学进展, 2021, 58(12): 417-426.
[13]  艾明曦. 基于泡沫视频双流特征的锌快粗选加药量优化控制[D]: [博士学位论文]. 长沙: 中南大学, 2022.
[14]  吕文豹. 望峰岗选煤厂浮选自动加药系统的研究[D]: [硕士学位论文]. 淮南: 安徽理工大学, 2013.
[15]  宋建军. 提高矿产资源开发利用效率的思考[J]. 国土资源情报, 2015(9): 28-33.
[16]  Jain, M., Saihjpal, V., Singh, N. and Singh, S.B. (2022) An Overview of Variants and Advancements of PSO Algorithm. Applied Sciences, 12, Article 8392.
https://doi.org/10.3390/app12178392
[17]  Stocchero, M., De Nardi, M. and Scarpa, B. (2021) PLS for Classification. Chemometrics and Intelligent Laboratory Systems, 216, Article 104374.
https://doi.org/10.1016/j.chemolab.2021.104374
[18]  郑培超, 赵伟能, 王金梅, 等. 基于PSO-PLS混合算法的水体COD紫外吸收光谱检测研究[J]. 光谱学与光谱分析, 2021, 41(1): 136-140.
[19]  陈恩会. 选煤厂的浮选工艺技术操作探讨[J]. 技术与市场, 2019, 26(9): 146-147.
[20]  Greenacre, M., Groenen, P.J.F., Hastie, T., D’Enza, A.I., Markos, A. and Tuzhilina, E. (2022) Principal Component Analysis. Nature Reviews Methods Primers, 2, Article No. 100.
https://doi.org/10.1038/s43586-022-00184-w
[21]  Gewers, F.L., Ferreira, G.R., Arruda, H.F.D., Silva, F.N., Comin, C.H., Amancio, D.R., et al. (2021) Principal Component Analysis: A Natural Approach to Data Exploration. ACM Computing Surveys, 54, Article No. 70.
https://doi.org/10.1145/3447755
[22]  Stocchero, M. (2023) PLS for Designed Experiments. Chemometrics and Intelligent Laboratory Systems, 240, Article 104928.
https://doi.org/10.1016/j.chemolab.2023.104928
[23]  李启福. 铝土矿泡沫浮选过程精矿品位预测模型的研究[D]: [硕士学位论文]. 长沙: 中南大学, 2012.
[24]  董志勇, 王然风, 樊民强, 等. 基于PSO-LSSVM的煤泥浮选药剂自动添加系统研究[J]. 煤炭工程, 2017, 49(2): 117-120.
[25]  Couceiro, M.S., Rocha, R.P., Ferreira, N.M.F. and Machado, J.A.T. (2012) Introducing the Fractional-Order Darwinian Pso. Signal, Image and Video Processing, 6, 343-350.
https://doi.org/10.1007/s11760-012-0316-2
[26]  Chan, C. and Chen, C. (2015) A Cautious PSO with Conditional Random. Expert Systems with Applications, 42, 4120-4125.
https://doi.org/10.1016/j.eswa.2014.12.046
[27]  Lu, F., Liu, H. and Lv, W. (2024) Deep Correlation and Precise Prediction between Static Features of Froth Images and Clean Coal Ash Content in Coal Flotation: An Investigation Based on Deep Learning and Maximum Likelihood Estimation. Measurement, 224, Article 113843.
https://doi.org/10.1016/j.measurement.2023.113843

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133