|
贫困退出背景下衡阳返贫脆弱性调查与评价
|
Abstract:
针对区域返贫脆弱性进行精确识别,预防和化解返贫风险成为“后扶贫时代”的核心任务。本文基于暴露–敏感–适应理论框架,构建生态–福利–经济三位一体的返贫脆弱性指标体系,以2021年的数据为样本,采用BP神经网络,科学评估衡阳7个县域返贫脆弱性问题,研究发现:1) 常宁、衡山与衡阳整体返贫脆弱度高,处于最高级别;衡东、衡南与耒阳整体返贫脆弱度低,处于最低级别;2) 根据主导要素的差异,将衡阳返贫脆弱性较高的地区划分为三大类别,其中衡山县属于多维约束返贫脆弱县,衡阳县表现为生态–福利约束返贫脆弱县,而常宁则为生态–经济约束返贫脆弱县;3) 为有效预防和化解返贫,需要协同薄弱区域的人、地和业要素,重视生态环境与贫困的相互影响,加强政策干预。
Accurately identifying regional vulnerability to poverty relapse, preventing and resolving the risk of poverty relapse have become the core tasks of the “post-poverty alleviation era”. Based on the exposure-sensitivity-adaptation theoretical framework, this paper constructs a trinity vulnerability index system for poverty relapse that integrates ecology, welfare, and economy. Using data from 2021 as a sample and the BP neural network, this paper scientifically assesses the vulnerability to poverty relapse in seven counties in Hengyang. The research findings are as follows: 1) Changning, Hengshan, and Hengyang as a whole have high vulnerability to poverty relapse, ranking at the highest level; Hengdong, Hengnan, and Leiyang have low vulnerability to poverty relapse, ranking at the lowest level; 2) According to the differences in dominant factors, the regions with high vulnerability to poverty relapse in Hengyang are divided into three categories. Among them, Hengshan County belongs to a county with multidimensional constraint vulnerability to poverty relapse, Hengyang County exhibits vulnerability to poverty relapse constrained by ecology and welfare, while Changning is vulnerable to poverty relapse constrained by ecology and economy; 3) To effectively prevent and resolve poverty relapse, it is necessary to coordinate the human, land, and industrial factors in vulnerable regions, pay attention to the mutual influence between the ecological environment and poverty, and strengthen policy interventions.
[1] | 王瑶. 大决战倒计时 国务院扶贫办主任刘永富谈脱贫攻坚[EB/OL]. http://rmfp.people.com.cn/n1/2020/0312/c406725-31629675.html, 2020-03-12. |
[2] | 王佳楣, 张伯斗, 罗剑朝. 贫困治理视角下的中国返贫研究演进与发展[J]. 生产力研究, 2019, 34(10): 22-26. |
[3] | 刘胜强, 赵雪雁. 生态脆弱区农户返贫脆弱性评估及其影响因素——以陇南山区为例[J]. 生态学报, 2024, 44(3): 1009-1023. |
[4] | 潘卓, 廖和平, 刘愿理, 等. 西南山区乡村贫困地域系统时空演化格局研究——以云南省镇沅县为例[J]. 西南大学学报(自然科学版), 2024, 46(3): 2-14. |
[5] | 田明杰, 马珍, 王伟, 等. 中部典型农区县域农户多维贫困测度及致贫机理——以河南省新蔡县为例[J]. 地域研究与开发, 2023, 42(2): 143-149. |
[6] | 王海燕. 返贫风险的防范与治理[J]. 东南学术, 2023(5): 157-166. |
[7] | 杨飞, 马超, 方华军. 脆弱性研究进展: 从理论研究到综合实践[J]. 生态学报, 2019, 39(2): 441-453. |
[8] | 汤良, 胡希军, 罗紫薇, 等. 生态脆弱性与城镇化水平时空耦合及其交互影响因素——以湖南省为例[J]. 生态学报, 2024, 44(11): 4662-4677. |
[9] | 彭开丽, 张安录. 土地利用变化中农户脆弱性研究: 一个理论分析框架及基于中国中部五省的调研实证[J]. 自然资源学报, 2015, 30(11): 1798-1810. |
[10] | Hoddinott, J., Quisumbing, A. (2010) Methods for Microeconometric Risk and Vulnerability Assessment. In: Fuentes-Nieva, R. and Seck, P.A. Eds., Risk, Shocks, and Human Development, Palgrave Macmillan, 62-100. https://doi.org/10.1057/9780230274129_4 |
[11] | OPHI (2018) Global Multidimensional Poverty Index 2018: The Most Detailed Picture to Date of the World’s Poorest People. University of Oxford. |
[12] | Azeem, M.M., Mugera, A.W. and Schilizzi, S. (2017) Vulnerability to Multi-Dimensional Poverty: An Empirical Comparison of Alternative Measurement Approaches. The Journal of Development Studies, 54, 1612-1636. https://doi.org/10.1080/00220388.2017.1344646 |
[13] | 李寻欢, 周扬, 陈玉福. 区域多维贫困测量的理论与方法[J]. 地理学报, 2020, 75(4): 753-768. |
[14] | 朱姝, 冯艳芬, 王芳, 等. 粤北山区相对贫困村的脱贫潜力评价及类型划分——以连州市为例[J]. 自然资源学报, 2018, 33(8): 1304-1316. |
[15] | 高明, 李小云, 李鹏. 全面脱贫后农村多维贫困测量研究[J]. 农村经济, 2021(7): 34-41. |
[16] | 陈文美, 张昌柱, 李春根. 农村脱贫家庭返贫风险测度及预警机制构建研究——基于生计脆弱性的分析框架[J]. 贵州财经大学学报, 2023(2): 73-82. |
[17] | 赵雪雁, 刘江华, 王伟军, 等. 贫困山区脱贫农户的生计可持续性及生计干预: 以陇南山区为例[J]. 地理科学进展, 2020, 39(6): 982-995. |
[18] | 严小燕, 祁新华, 潘颖, 李亚桐. 贫困退出背景下返贫脆弱性评价——融合区域与个体的新视角[J]. 自然资源学报, 2022, 37(2): 440-458. |
[19] | 袁帅, 刘雨昕, 汪意, 等. 基于BP神经网络的湖南省县域贫困识别研究[J]. 湖南师范大学自然科学学报, 2022, 45(6): 32-40. |
[20] | 刘一明, 胡卓玮, 赵文吉, 等. 基于BP神经网络的区域贫困空间特征研究——以武陵山连片特困区为例[J]. 地球信息科学学报, 2015, 17(1): 69-77. |