全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

First-Principles Calculations on Novel Rb-Based Halide Double Perovskites Alloys for Spintronics and Optoelectronic Applications

DOI: 10.4236/opj.2024.141001, PP. 1-22

Keywords: Halide Double Perovskites, Density Functional Theory, Spintronic, Photovoltaic Solar Cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

The outcomes of computational study of electronic, magnetic and optical spectra for A2BX6 (A = Rb; B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vanderbilt Ultra Soft Pseudo Potential (US-PP) process. The Rb2PbBr6 and Rb2PbCl6 are found to be a (Г-Г) semiconductors with energy gaps of 0.275 and 1.142 eV, respectively making them promising photovoltaic materials. The metallic behavior of the materials for Rb2BX6 (B = Tc, W, Ir, Ta, Mn, Sb, Mo) has been confirmed showing the attendance of conducting lineaments. The dielectric function is found to be large close to the ultraviolet districts (3.10 - 4.13 eV). The extinction coefficient of the Rb2BX6 has the ability to be used for implements. The band structures and density of states ensure the magnetic semiconductors’ nature of the Rb2Mn (Cl, Br)6 perovskites. The total calculated magnetic moment of Rb2MnCl6 and Rb2MnB6 is 3.00μβ. Advanced spintronic technology requires room-temperature ferromagnetism. The present work confirms that, bromine and chlorine-founded double perovskites are extremely attractive for photovoltaic and optoelectronic devices.

References

[1]  Luque, A. and Martí, A. (1997) Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels. Physical Review Letters, 78, 5014-5017.
https://doi.org/10.1103/physrevlett.78.5014
[2]  Rasukkannu, M., Velauthapillai, D. and Vajeeston, P. (2017) Computational Modeling of Novel Bulk Materials for the Intermediate-Band Solar Cells. ACS Omega, 2, 1454-1462.
https://doi.org/10.1021/acsomega.6b00534
[3]  Luque, A., Martí, A. and Stanley, C. (2012) Understanding Intermediate-Band Solar Cells. Nature Photonics, 6, 146-152.
https://doi.org/10.1038/nphoton.2012.1
[4]  Luque, A. and Martí, A. (2001) A Metallic Intermediate Band High Efficiency Solar Cell. Progress in Photovoltaics: Research and Applications, 9, 73-86.
https://doi.org/10.1002/pip.354
[5]  Shockley, W. and Queisser, H.J. (1961) Detailed Balance Limit of Efficiency of p-N Junction Solar Cells. Journal of Applied Physics, 32, 510-519.
https://doi.org/10.1063/1.1736034
[6]  Nrel, N. (2019) Best Research-Cell Efficiencies. National Renewable Energy Laboratory.
[7]  Pingak, R.K., Bouhmaidi, S., Harbi, A., Setti, L., Nitti, F., Moutaabbid, M., et al. (2023) A DFT Investigation of Lead-Free Tlsnx3 (X = Cl, Br, or I) Perovskites for Potential Applications in Solar Cells and Thermoelectric Devices. RSC Advances, 13, 33875-33886.
https://doi.org/10.1039/d3ra06685a
[8]  Ali, I., Burakova, I., Galunin, E., Burakov, A., Mkrtchyan, E., Melezhik, A., et al. (2019) High-speed and High-Capacity Removal of Methyl Orange and Malachite Green in Water Using Newly Developed Mesoporous Carbon: Kinetic and Isotherm Studies. ACS Omega, 4, 19293-19306.
https://doi.org/10.1021/acsomega.9b02669
[9]  Ali, I., Afshinb, S., Poureshgh, Y., Azari, A., Rashtbari, Y., Feizizadeh, A., et al. (2020) Green Preparation of Activated Carbon from Pomegranate Peel Coated with Zero-Valent Iron Nanoparticles (NZVI) and Isotherm and Kinetic Studies of Amoxicillin Removal in Water. Environmental Science and Pollution Research, 27, 36732-36743.
https://doi.org/10.1007/s11356-020-09310-1
[10]  Al-Abbad, E.A. and Al Dwairi, R.A. (2021) Removal of Nickel (II) Ions from Water by Jordan Natural Zeolite as Sorbent Material. Journal of Saudi Chemical Society, 25, Article ID: 101233.
https://doi.org/10.1016/j.jscs.2021.101233
[11]  Göde, F. (2019) Effect of Cu Doping on CDS as a Multifunctional Nanomaterial: Structural, Morphological, Optical and Electrical Properties. Optik, 197, Article ID: 163217.
https://doi.org/10.1016/j.ijleo.2019.163217
[12]  Vinodkumar, R., Varghese, J., Varghese, J. and Unnikrishnan, N.V. (2018) Structural, Optical and Dielectricproperties of Gadolinium Incorporated Laser Ablatedznothin Films. Optik, 174, 274.
https://doi.org/10.1016/j.ijleo.2018.08.074
[13]  Manser, J.S., Christians, J.A. and Kamat, P.V. (2016) Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chemical Reviews, 116, 12956-13008.
https://doi.org/10.1021/acs.chemrev.6b00136
[14]  Hamers, L. (2017) Perovskites Power up the Solar Industry. Science News.
[15]  Jiang, N., Wang, Z., Zheng, Y., Guo, Q., Niu, W., Zhang, R., et al. (2022) 2D/3D Heterojunction Perovskite Light-Emitting Diodes with Tunable Ultrapure Blue Emissions. Nano Energy, 97, Article ID: 107181.
https://doi.org/10.1016/j.nanoen.2022.107181
[16]  Hu, D., Zhao, X., Tang, T., Li, L. and Tang, Y. (2022) Insights on Structural, Elastic, Electronic and Optical Properties of Double-Perovskite Halides Rb2CuBiX6 (X=Br, Cl). Journal of Physics and Chemistry of Solids, 167, Article ID: 110791.
https://doi.org/10.1016/j.jpcs.2022.110791
[17]  Bousahla, M.A., Faizan, M., Seddik, T., Bin Omran, S., Khachai, H., Laref, A., et al. (2022) DFT Study on the Crystal Structure, Optoelectronic, and Thermoelectric Properties of Lead-Free Inorganic A2PdBr6 (A = K, Rb, and Cs) Perovskites. Materials Today Communications, 30, Article ID: 103061.
https://doi.org/10.1016/j.mtcomm.2021.103061
[18]  Zhao, X., Wei, X., Tang, T., Xie, Q., Gao, L., Lu, L., et al. (2022) Theoretical Prediction of the Structural, Electronic and Optical Properties of Vacancy-Ordered Double Perovskites Tl2TiX6 (X = Cl, Br, I). Journal of Solid State Chemistry, 305, Article ID: 122684.
https://doi.org/10.1016/j.jssc.2021.122684
[19]  Berri, S. (2020) First-principles Search for Half-Metallic Ferromagnetism in Double Perovskite X2MnUo6 (X = Sr or Ba) Compounds. Acta Physica Polonica A, 138, 834-837.
https://doi.org/10.12693/aphyspola.138.834
[20]  Oumertem, M., Maouche, D., Berri, S., Bouarissa, N., Rai, D.P., Khenata, R., et al. (2019) Theoretical Investigation of the Structural, Electronic and Thermodynamic Properties of Cubic and Orthorhombic XZrS3 (X = Ba, Sr, Ca) Compounds. Journal of Computational Electronics, 18, 415-427.
https://doi.org/10.1007/s10825-019-01317-3
[21]  Berri, S. (2020) Theoretical Analysis of the Structural, Electronic, Optical and Thermodynamic Properties of Trigonal and Hexagonal Cs3Sb2I9 Compound. The European Physical Journal B, 93, Article No. 191.
https://doi.org/10.1140/epjb/e2020-10143-1
[22]  Berri, S. (2021) Half-Metallic and Thermoelectric Properties of Sr2EuReO6. Computational Condensed Matter, 28, e00586.
https://doi.org/10.1016/j.cocom.2021.e00586
[23]  Berri, S. (2022) First Principle Analysis of Structural, Electronic, Optical, and Thermoelectric Characteristics of Ba3CaTa2O9 Complex Perovskite. Emergent Materials, 5, 1849-1857.
https://doi.org/10.1007/s42247-021-00331-1
[24]  Berri, S. (2022) Thermoelectric Properties of A2BCL6: A First Principles Study. Journal of Physics and Chemistry of Solids, 170, Article ID: 110940.
https://doi.org/10.1016/j.jpcs.2022.110940
[25]  Mir, S.A. and Gupta, D.C. (2021) Analysis of Cage Structured Halide Double Perovskites Cs2NaMCL6 (M = Ti, V) by Spin Polarized Calculations. Journal of Alloys and Compounds, 854, Article ID: 156000.
https://doi.org/10.1016/j.jallcom.2020.156000
[26]  Dar, S.A., Want, B. and Khandy, S.A. (2022) Computer Based Predictions of Structural Stability and Systematic Study of Magneto-Electronic and Optical Properties of Lead Free Halide Double Perovskites: Cs2KXCl6: X = Co and Ni. Journal of Magnetism and Magnetic Materials, 545, Article ID: 168603.
https://doi.org/10.1016/j.jmmm.2021.168603
[27]  Ud Din, M., Munir, J., Jamil, M., Saeed, M.A. and Ain, Q. (2022) Electronic Structure and Optical Response of Double Perovskite Rb2NaCoF6 for Optoelectronic Devices. Physica B: Condensed Matter, 627, Article ID: 413533.
https://doi.org/10.1016/j.physb.2021.413533
[28]  Dietl, T. (2008) Origin and Control of Ferromagnetism in Dilute Magnetic Semiconductors and Oxides (Invited). Journal of Applied Physics, 103, Article ID: 07D111.
https://doi.org/10.1063/1.2832613
[29]  Cui, X.Y., Medvedeva, J.E., Delley, B., Freeman, A.J., Newman, N. and Stampfl, C. (2005) Role of Embedded Clustering in Dilute Magnetic Semiconductors: Cr Doped GaN. Physical Review Letters, 95, Article ID: 256404.
https://doi.org/10.1103/physrevlett.95.256404
[30]  Ben Ali, M., El Maalam, K., El Moussaoui, H., Mounkachi, O., Hamedoun, M., Masrour, R., et al. (2016) Effect of Zinc Concentration on the Structural and Magnetic Properties of Mixed Co-Zn Ferrites Nanoparticles Synthesized by Sol/Gel Method. Journal of Magnetism and Magnetic Materials, 398, 20-25.
https://doi.org/10.1016/j.jmmm.2015.08.097
[31]  El Maalam, K., Ben Ali, M., El Moussaoui, H., Mounkachi, O., Hamedoun, M., Masrour, R., et al. (2015) Magnetic Properties of Tin Ferrites Nanostructures Doped with Transition Metal. Journal of Alloys and Compounds, 622, 761-764.
https://doi.org/10.1016/j.jallcom.2014.10.152
[32]  Retuerto, M., Alonso, J.A., García-Hernández, M. and Martínez-Lope, M.J. (2006) Synthesis, Structure and Magnetic Properties of the New Double Perovskite Ca2CrSbO6. Solid State Communications, 139, 19-22.
https://doi.org/10.1016/j.ssc.2006.05.011
[33]  Bouras, S., Ghebouli, B., Benkerri, M., Ghebouli, M.A. and Bouhemadou, A. (2013) First-Principles Calculations on Elastic, Electronic and Optical Properties for the Alkaline Platinum Hydrides A2PtH6 (A=K, Rb and Cs). Materials Science in Semiconductor Processing, 16, 940-946.
https://doi.org/10.1016/j.mssp.2013.01.024
[34]  Jong, U., Yu, C. and Kye, Y. (2020) Computational Prediction of Structural, Electronic, and Optical Properties and Phase Stability of Double Perovskites K2SnX6 (X = I, Br, Cl). RSC Advances, 10, 201-209.
https://doi.org/10.1039/c9ra09232c
[35]  Berri, S. (2017) Theoretical Analysis of the Structural, Electronic and Optical Properties of Tetragonal Sr2GaSbO6. Chinese Journal of Physics, 55, 2476-2483.
https://doi.org/10.1016/j.cjph.2017.11.001
[36]  Berri, S. (2023) First-Principles Calculations to Investigate Structural, Electronic, Elastic, Optical and Transport Properties of Halide Double Perovskites Cs2ABF6 (AB = BiAu, AgIr, CuBi, GaAu, InAs, InAg, InAu, InSb and InBi) for Solar Cells and Renewable Energy Applications. Chemical Physics Letters, 826, Article ID: 140653.
https://doi.org/10.1016/j.cplett.2023.140653
[37]  Zanib, M., Iqbal, M.W., Manzoor, M., Asghar, M., Sharma, R., Ahmad, N.N., et al. (2023) A DFT Investigation of Mechanical, Optical and Thermoelectric Properties of Double Perovskites K2AgAsX6 (X = Cl, Br) Halides. Materials Science and Engineering: B, 295, Article ID: 116604.
https://doi.org/10.1016/j.mseb.2023.116604
[38]  Wu, Y., Xiang, G., Zhang, M., Liu, J., Wei, D., Cheng, C., et al. (2023) The Effect of Uniaxial Strain on Electronic and Optical Properties of Halide Double Perovskites Cs2AgXCl6 (X=Sb, Bi): A DFT Approach. Journal of Alloys and Compounds, 961, Article ID: 170995.
https://doi.org/10.1016/j.jallcom.2023.170995
[39]  Rached, H., Bendaoudia, S. and Rached, D. (2017) Investigation of Iron-Based Double Perovskite Oxides on the Magnetic Phase Stability, Mechanical, Electronic and Optical Properties via First-Principles Calculation. Materials Chemistry and Physics, 193, 453-469.
https://doi.org/10.1016/j.matchemphys.2017.03.006
[40]  Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., et al. (2008) Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100, Article ID: 136406.
https://doi.org/10.1103/physrevlett.100.136406
[41]  Heyd, J., Scuseria, G.E. and Ernzerhof, M. (2003) Hybrid Functionals Based on a Screened Coulomb Potential. The Journal of Chemical Physics, 118, 8207-8215.
https://doi.org/10.1063/1.1564060
[42]  Segall, M.D., Lindan, P.J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., et al. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744.
https://doi.org/10.1088/0953-8984/14/11/301
[43]  Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188-5192.
https://doi.org/10.1103/physrevb.13.5188
[44]  Kuzmenko, A.B. (2005) Kramers-Kronig Constrained Variational Analysis of Optical Spectra. Review of Scientific Instruments, 76, Article ID: 083108.
https://doi.org/10.1063/1.1979470
[45]  Liu, X., Wu, W., Zhang, Y., Li, Y., Wu, H. and Fan, J. (2019) Critical Roles of High-and Low-Frequency Optical Phonons in Photodynamics of Zero-Dimensional Perovskite-Like (C6H22N4Cl3)SnCl3 Crystals. The Journal of Physical Chemistry Letters, 10, 7586-7593.
https://doi.org/10.1021/acs.jpclett.9b03153
[46]  Usman, M., Ur Rehman, J., Bilal Tahir, M., Hussain, A., Sagir, M., Assiri, M.A., et al. (2022) First-Principles Calculations to Investigate Variation in the Bandgap of NaSrF3 Fluoro-Perovskite with External Static Isotropic Pressure and Its Impact on Optical Properties. Computational and Theoretical Chemistry, 1214, Article ID: 113766.
https://doi.org/10.1016/j.comptc.2022.113766
[47]  Phuc, L.H., Hien, N.Q. and Nguyen-Truong, H.T. (2022) Dielectric and Optical Properties of Cubic Perovskites ATiO3 (A = Ca, Sr, Ba, Pb). Solid State Communications, 350, Article ID: 114760.
https://doi.org/10.1016/j.ssc.2022.114760
[48]  Castelletto, S., De Angelis, F. and Boretti, A. (2022) Prospects and Challenges of Quantum Emitters in Perovskites Nanocrystals. Applied Materials Today, 26, Article ID: 101401.
https://doi.org/10.1016/j.apmt.2022.101401
[49]  Alade, I.O., Olumegbon, I.A. and Bagudu, A. (2020) Lattice Constant Prediction of A2XY6 Cubic Crystals (A = K, Cs, Rb, TI; X = Tetravalent Cation; Y = F, Cl, Br, I) Using Computational Intelligence Approach. Journal of Applied Physics, 127, Article ID: 015303.
https://doi.org/10.1063/1.5130664
[50]  Lalancette, R.A., Elliott, N. and Bernal, I. (1972) Crystal Structures and Magnetic Properties of A2MnCl6 Salts (A = NH4+, K+ and Rb+). Journal of Crystal and Molecular Structure, 2, 143-149.
https://doi.org/10.1007/bf01464795
[51]  Webster, M. and Collins, P.H. (1973) Structural and Thermochemical Studies on Rb2TeCl6 and Comparison with Rb2SnCl6. Journal of the Chemical Society, Dalton Transactions, 1973, 588-594.
https://doi.org/10.1039/dt9730000588
[52]  Abriel, W. and Ihringer, J. (1984) Crystal Structures and Phase Transition of Rb2TeBr6 (300-12.5 K). Journal of Solid State Chemistry, 52, 274-280.
https://doi.org/10.1016/0022-4596(84)90010-0
[53]  Ali, M.A., Alshahrani, T. and Murtaza, G. (2021) Defective Perovskites Cs2secl6 and Cs2tecl6 as Novel High Temperature Potential Thermoelectric Materials. Materials Science in Semiconductor Processing, 127, Article ID: 105728.
https://doi.org/10.1016/j.mssp.2021.105728
[54]  Brik, M.G. and Kityk, I.V. (2011) Modeling of Lattice Constant and Their Relations with Ionic Radii and Electronegativity of Constituting Ions of A2XY6 Cubic Crystals (A=K, Cs, Rb, Tl; X=tetravalent Cation, Y=F, Cl, Br, I). Journal of Physics and Chemistry of Solids, 72, 1256-1260.
https://doi.org/10.1016/j.jpcs.2011.07.016
[55]  Huma, M., Rashid, M., Mahmood, Q., Algrafy, E., Kattan, N.A., Laref, A., et al. (2021) Physical Properties of Lead-Free Double Perovskites A2SnI6 (A= Cs, Rb) Using Ab-Initio Calculations for Solar Cell Applications. Materials Science in Semiconductor Processing, 121, Article ID: 105313.
https://doi.org/10.1016/j.mssp.2020.105313
[56]  Mahmood, Q., Zelai, T., Nazir, G., Albalawi, H., Aljameel, A.I., Aslam, I., et al. (2022) First Principles Study of Electronic, Optical, and Thermoelectric Properties of K2Pd (Cl/Br)6 for Solar Cells and Renewable Energy. Physica Scripta, 97, Article ID: 035803.
https://doi.org/10.1088/1402-4896/ac4ed3
[57]  Engel, G. (1935) Die Kristallstrukturen einiger Hexachlorokomplexsalze. Zeitschrift für KristallographieCrystalline Materials, 90, 341-373.
https://doi.org/10.1524/zkri.1935.90.1.341
[58]  Brill, T.B., Gerhart, R.C. and Welsh, W.A. (1974) Crystal Structures of M2SnCl6 Salts. An Analysis of the “Crystal field effect” in Their Nuclear Quadrupole Resonance and Vibrational Spectra, Journal of Magnetic Resonance, 13, 27-37.
https://doi.org/10.1016/0022-2364(74)90101-2
[59]  Yun, H. (2003) Simultaneous Synthesis of Enantiomerically Pure (R)-1-Phenylethanol and (R)-α-Methylbenzylamine from Racemic α-Methylbenzylamine Using ω-Transa-minase/Alcohol Dehydrogenase/Glucose Dehydrogenase Coupling Reactio. Biotechnology Letters, 25, 809-814.
https://doi.org/10.1023/a:1023500406897
[60]  Wang, P., Xu, W. and Zheng, Y.Q. (2003) Crystal Structure of Dicaesium Hexachlorotungstate(IV), Cs2[WCL6]. Zeitschrift für KristallographieNew Crystal Structures, 218, 25.
https://doi.org/10.1524/ncrs.2003.218.jg.25
[61]  Moews, P.C. (1966) The Crystal Structure, Visible, and Ultraviolet Spectra of Potassium Hexachloromanganate(IV). Inorganic Chemistry, 5, 5-8.
https://doi.org/10.1021/ic50035a002
[62]  Edwards, A.J., Peacock, R.D. and Said, A. (1962) 894. Complex Chlorides and Bromides of Quadrivalent Molybdenum. Journal of the Chemical Society (Resumed), 1962, 4643-4648.
https://doi.org/10.1039/jr9620004643
[63]  McCullough, J.D. (1936) The Crystal Structure of Potassium Chlorosmate, K2OsCl6, and of Potassium Bromosmate, K2OsBr6. Zeitschrift für KristallographieCrystalline Materials, 94, 143-149.
https://doi.org/10.1524/zkri.1936.94.1.143
[64]  Berri, S. and Bouarissa, N. (2024) Electronic Structure and Optical Spectra of HalidePerovskites A2BCl6 [(A = Cs; B = Se, Sn, Te, Ti, Zr) and (A = K; B = Pd, Pt, Sn)] for Photovoltaic and Optoelectronic Applications. Physica Status Solidi B, 261, Article ID: 2300280.
https://doi.org/10.1002/pssb.202300280
[65]  Berri, S. (2020) First-Principles Investigation of the Physical Properties of XSb2O6 (X = Ca, Sr, Ba) and YAs2O6 (Y = Mn, Co). Computational Condensed Matter, 22, e00440.
https://doi.org/10.1016/j.cocom.2019.e00440
[66]  Khan, I., Ahmad, I., Rahnamaye Aliabad, H.A. and Maqbool, M. (2012) Effect of Phase Transition on the Optoelectronic Properties of Zn1−xMgxS. Journal of Applied Physics, 112, Article ID: 073104.
https://doi.org/10.1063/1.4756040
[67]  Khan, I., Ahmad, I., Aliabad, H.A.R., Asadabadi, S.J., Ali, Z. and Maqbool, M. (2013) Conversion of Optically Isotropic to Anisotropic CdSxSe1−x (0 ≤ x ≤ 1) Alloy with S Concentration. Computational Materials Science, 77, 145-152.
https://doi.org/10.1016/j.commatsci.2013.04.030
[68]  Park, B., Philippe, B., Zhang, X., Rensmo, H., Boschloo, G. and Johansson, E.M.J. (2015) Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application. Advanced Materials, 27, 6806-6813.
https://doi.org/10.1002/adma.201501978
[69]  Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D. and Luitz, J. (2001) WIEN2k: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties. Vienna UniversityTechnology.
[70]  Loschen, C., Carrasco, J., Neyman, K.M. and Illas, F. (2007) First-Principles LDA+U and GGA+U Study of Cerium Oxides: Dependence on the Effective U Parameter. Physical Review B, 75, Article ID: 035115.
https://doi.org/10.1103/physrevb.75.035115
[71]  Erdmann, S., Klüner, T. and Sözen, H.İ. (2023) Magnetic Properties of Rare-Earth-Lean ThMn12-Type (Nd, X) Fe11Ti (X: Y and Ce) Compounds: A DFT Study. Journal of Magnetism and Magnetic Materials, 572, Article ID: 170645.
https://doi.org/10.1016/j.jmmm.2023.170645
[72]  Khan, A.A., Saqib, M., Zada, Z., Chahed, F., Ismail, M., Ishaq, M., et al. (2022) Electronic Structure, Magnetic, and Thermoelectric Properties of BaMn2As2 Compound: A First-Principles Study. Physica Scripta, 97, Article ID: 065810.
https://doi.org/10.1088/1402-4896/ac6d1c
[73]  Rodríguez, K.L.S., Quintero, J.J.M., Rodríguez Torres, C.E. and Errico, L. (2023) Structural, Electronic, Magnetic and Hyperfine Properties of Fe2AlO4 and FeAl2O4. a DFT Study. Journal of Alloys and Compounds, 958, Article ID: 170385.
https://doi.org/10.1016/j.jallcom.2023.170385
[74]  Dong, Y., Lu, H., Cui, J., Yan, D., Yin, F. and Li, D. (2017) Mechanical Characteristics of FeAl2O4 and AlFe2O4 Spinel Phases in Coatings—A Study Combining Experimental Evaluation and First-Principles Calculations. Ceramics International, 43, 16094-16100.
https://doi.org/10.1016/j.ceramint.2017.08.142
[75]  Bahnes, A., Boukortt, A., Abbassa, H., Aimouch, D.E., Hayn, R. and Zaoui, A. (2018) Half-Metallic Ferromagnets Behavior of a New Quaternary Heusler Alloys CoFeCrZ (Z = P, As and Sb): Ab-initio Study. Journal of Alloys and Compounds, 731, 1208-1213.
https://doi.org/10.1016/j.jallcom.2017.10.178
[76]  Cohen, M.L. and Chelikowsky, J.R. (1989) Electronic Structure and Optical Properties of Semiconductors. Springer-Verlag.
[77]  Mahmood, A., Shi, G., Sun, J. and Liu, J. (2018) Investigation of Electronic Structure and Optical Properties of Thallium Lead Halides: First Principle Calculations. Journal of Applied Physics, 124, Article ID: 093102.
https://doi.org/10.1063/1.5045171
[78]  Behram, R.B., Iqbal, M.A., Alay-e-Abbas, S.M., Sajjad, M., Yaseen, M., Arshad, M.I., et al. (2016) Theoretical Investigation of Mechanical, Optoelectronic and Thermoelectric Properties of BiGaO3 and BiInO3 Compounds. Materials Science in Semiconductor Processing, 41, 297-303.
https://doi.org/10.1016/j.mssp.2015.09.010
[79]  Aslam, F., B.Sabir, and Hassan, M. (2021) Structural, Electronic, Optical, Thermoelectric, and Transport Properties of Indium-Based Double Perovskite Halides Cs2InAgX6 (X = Cl, Br, I) for Energy Applications. Applied Physics A, 127, Article No. 112.
https://doi.org/10.1007/s00339-020-04178-x
[80]  Liu, B., Zhang, M., Zhao, Z., Zeng, H., Zheng, F., Guo, G., et al. (2013) Synthesis, Structure, and Optical Properties of the Quaternary Diamond-Like Compounds I2-II-IV-VI4 (I = Cu; II = Mg; IV = Si, Ge; VI = S, Se). Journal of Solid State Chemistry, 204, 251-256.
https://doi.org/10.1016/j.jssc.2013.05.039
[81]  Penn, D.R. (1962) Wave-Number-Dependent Dielectric Function of Semiconductors. Physical Review, 128, 2093-2097.
https://doi.org/10.1103/physrev.128.2093
[82]  Gao, C., Li, R., Li, Y., Wang, R., Wang, M., Gan, Z., et al. (2019) Direct-Indirect Transition of Pressurized Two-Dimensional Halide Perovskite: Role of Benzene Ring Stack Ordering. The Journal of Physical Chemistry Letters, 10, 5687-5693.
https://doi.org/10.1021/acs.jpclett.9b02604
[83]  Shim, H., Monticone, F. and Miller, O.D. (2021) Fundamental Limits to the Refractive Index of Transparent Optical Materials. Advanced Materials, 33, Article ID: 2103946.
https://doi.org/10.1002/adma.202103946
[84]  Wei, M., Lai, Y., Tseng, P., Li, M., Huang, C. and Ko, F. (2021) Concept for Efficient Light Harvesting in Perovskite Materials via Solar Harvester with Multi-Functional Folded Electrode. Nanomaterials, 11, Article 3362.
https://doi.org/10.3390/nano11123362
[85]  Soykan, C. and Gocmez, H. (2021) First-Principlesstudy for Comparison of the Electronic and Opticbandgaps of the CH3NH3Pb1-xYxI3 (Y=Bi, x=0.00, 0.125) and CH3NH3Pb1-xYxI3 (Y=Ca, Sr, x=0.125, 0.250) Perovskites. Physica B: Condensed Matter, 608, Article ID: 412897.
https://doi.org/10.1016/j.physb.2021.412897

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133