全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thin-Shell Wormholes Admitting Conformal Motions in Spacetimes of Embedding Class One

DOI: 10.4236/ijaa.2024.143010, PP. 162-171

Keywords: Thin-Shell Wormholes, Conformal Symmetry, Embedding Class One, Exotic Matter

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper discusses the feasibility of thin-shell wormholes in spacetimes of embedding class one admitting a one-parameter group of conformal motions. It is shown that the surface energy density σ is positive, while the surface pressure is negative, resulting in , thereby signaling a violation of the null energy condition, a necessary condition for holding a wormhole open. For a Morris-Thorne wormhole, matter that violates the null energy condition is referred to as “exotic”. For the thin-shell wormholes in this paper, however, the violation has a physical explanation since it is a direct consequence of the embedding theory in conjunction with the assumption of conformal symmetry. These properties avoid the need to hypothesize the existence of the highly problematical exotic matter.

References

[1]  Morris, M.S. and Thorne, K.S. (1988) Wormholes in Spacetime and Their Use for Interstellar Travel: A Tool for Teaching General Relativity. American Journal of Physics, 56, 395-412.
https://doi.org/10.1119/1.15620
[2]  Maartens, R. and Mellin, C.M. (1996) Anisotropic Universes with Conformal Motion. Classical and Quantum Gravity, 13, 1571-1577.
https://doi.org/10.1088/0264-9381/13/6/021
[3]  Böhmer, C.G., Harko, T. and Lobo, F.S.N. (2007) Conformally Symmetric Traversable Wormholes. Physical Review D, 76, Article ID: 084014.
https://doi.org/10.1103/physrevd.76.084014
[4]  Herrera, L. and Ponce de León, J. (1985) Perfect Fluid Spheres Admitting a One-Parameter Group of Conformal Motions. Journal of Mathematical Physics, 26, 778-784.
https://doi.org/10.1063/1.526567
[5]  Herrera, L. and Ponce de León, J. (1985) Anisotropic Spheres Admitting a One-Parameter Group of Conformal Motions. Journal of Mathematical Physics, 26, 2018-2023.
https://doi.org/10.1063/1.526872
[6]  Mars, M. and Senovilla, J.M.M. (1993) Axial Symmetry and Conformal Killing Vectors. Classical and Quantum Gravity, 10, 1633-1647.
https://doi.org/10.1088/0264-9381/10/8/020
[7]  Ray, S., Usmani, A.A., Rahaman, F., Kalam, M., and Chakraborty K. (2008) Electromagnetic Mass Model Admitting Conformal Motion. Indian Journal of Physics, 82, Article ID: 1191.
[8]  Rahaman, F., Jamil, M., Kalam, M., Chakraborty, K. and Ghosh, A. (2009) On Role of Pressure Anisotropy for Relativistic Stars Admitting Conformal Motion. Astrophysics and Space Science, 325, 137-147.
https://doi.org/10.1007/s10509-009-0167-7
[9]  Rahaman, F., Ray, S., Karar, I., Fatima, H.I., Bhowmick, S., and Ghosh, G.K. (2012) Static Charged Fluid in (2+1) Dimensions Admitting Conformal Killing Vectors. arXiv: 1211.1228.
[10]  Böhmer, C.G., Harko, T. and Lobo, F.S.N. (2008) Wormhole Geometries with Conformal Motions. Classical and Quantum Gravity, 25, Article ID: 075016.
https://doi.org/10.1088/0264-9381/25/7/075016
[11]  Wesson, P.S. and Ponce de Leon, J. (1992) Kaluza-Klein Equations, Einstein’s Equations, and an Effective Energy-Momentum Tensor. Journal of Mathematical Physics, 33, 3883-3887.
https://doi.org/10.1063/1.529834
[12]  Seahra, S.S. and Wesson, P.S. (2003) Application of the Campbell Magaard Theorem to Higher-Dimensional Physics. Classical and Quantum Gravity, 20, 1321-1339.
https://doi.org/10.1088/0264-9381/20/7/306
[13]  Campbell, J. (1926) A Course on Differential Geometry. The Clarendon Press.
[14]  Maurya, S.K., Deb, D., Ray, S. and Kuhfittig, P.K.F. (2019) A Study of Anisotropic Compact Stars Based on Embedding Class 1 Condition. International Journal of Modern Physics D, 28, Article ID: 1950116.
https://doi.org/10.1142/s0218271819501165
[15]  Maurya, S.K., Gupta, Y.K., Ray, S. and Deb, D. (2016) Generalised Model for Anisotropic Compact Stars. The European Physical Journal C, 76, Article No. 693.
https://doi.org/10.1140/epjc/s10052-016-4527-5
[16]  Maurya, S.K., Ratanpal, B.S. and Govender, M. (2017) Anisotropic Stars for Spherically Symmetric Spacetimes Satisfying the Karmarkar Condition. Annals of Physics, 382, 36-49.
https://doi.org/10.1016/j.aop.2017.04.008
[17]  Maurya, S.K., Gupta, Y.K., Ray, S. and Deb, D. (2017) A New Model for Spherically Symmetric Charged Compact Stars of Embedding Class 1. The European Physical Journal C, 77, Article No. 45.
https://doi.org/10.1140/epjc/s10052-017-4604-4
[18]  Maurya, S.K. and Maharaj, S.D. (2017) Anisotropic Fluid Spheres of Embedding Class One Using Karmarkar Condition. The European Physical Journal C, 77, Article No. 328.
https://doi.org/10.1140/epjc/s10052-017-4905-7
[19]  Maurya, S.K. and Govender, M. (2017) Generating Physically Realizable Stellar Structures via Embedding. The European Physical Journal C, 77, Article No. 347.
https://doi.org/10.1140/epjc/s10052-017-4916-4
[20]  Karmarkar, K.R. (1948) Gravitational Metrics of Spherical Symmetry and Class One. Proceedings of the Indian Academy of SciencesSection A, 27, Article No. 56.
https://doi.org/10.1007/bf03173443
[21]  Kuhfittig, P.K.F. (2017) Conformal Symmetry Wormholes and the Null Energy Condition. Journal of the Korean Physical Society, 70, 962-966.
https://doi.org/10.3938/jkps.70.962
[22]  Poisson, E. and Visser, M. (1995) Thin-Shell Wormholes: Linearization Stability. Physical Review D, 52, 7318-7321.
https://doi.org/10.1103/physrevd.52.7318
[23]  Lobo, F.S.N. (2004) Surface Stresses on a Thin Shell Surrounding a Traversable Wormhole. Classical and Quantum Gravity, 21, 4811-4832.
https://doi.org/10.1088/0264-9381/21/21/005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133