Traditional Healer’s Medicinal Practice Survey and Clinical Evidence Assessment of “YIKI”: An Antimalarial Phytomedicine Recipe from Bobo-Dioulasso, Burkina Faso
YIKI is an antimalarial phytomedicine used by a traditional healer to treat malaria in Bobo-Dioulasso. However, there is no scientific evidence to support its use by local populations. The aim of this study was to identify the medicinal practices of the healer holder of YIKI and assess the clinical evidence of its phytomedicine in the uncomplicated malaria treatment. Ethnomedical survey based on a semi-structured and open questionnaire was conducted from October to December 2019 with the healer. Malaria knowledge and diagnosis methods, patient treatment and monitoring, and recipe formulation steps were surveyed. Moreover, thick and thin blood smears were taken, haemoglobin levels and temperature of consenting patients were measured before treatment, mid-treatment and at the end of treatment. The survey revealed that the healer has a good knowledge of malaria symptoms and his diagnosis is based on observation and physical examination of patients. The healer’s malaria diagnosis was rudimentary and had accuracy problems, with only 62.79% of malaria cases confirmed by microscopy. The formulation of YIKI and its use to treat malaria follow a standard process for plant harvesting, powder quantities and posology, but do not use any reproducible parameters for dose adjustment. Forty-three patients diagnosed and treated by the healer participated in the study. Laboratory results revealed 27 Plasmodium falciparum infection cases, including 2 with parasitaemia ≥ 200,000 p/μl blood. 25 patients were selected for therapeutic evidence assessment. There was a 48% elimination of parasites, a 28% parasitaemia decrease without complete cure, with gametocytogenesis in some patients, and a 24% parasitaemia increase. Haemoglobin and temperature results suggested that YIKI was not cytotoxic and reduced fever. Encouraging preliminary results have been obtained, but in view of the low number of patients, further YIKI efficacy and toxicity studies will be necessary for patient safety.
References
[1]
WHO (2023) World Malaria Report. https://Www.Who.Int/Teams/Global-Malaria-Programme/Reports/World-Malaria-Report-2023
[2]
Ministere de La Sante (2023) Annuaire Statistique 2022. http://cns.bf/IMG/pdf/annuaire_2022_mshp_signe.pdf
[3]
Gansane, A., Nebie, I., Soulama, I., Tiono, A., Diarra, A., KonatE, A., et al. (2009) Change of Antimalarial First-Line Treatment in Burkina Faso in 2005. Bulletin de la Société de Pathologie Exotique, 102, 1-5.
[4]
Bassat, Q., Mulenga, M., Tinto, H., Piola, P., Borrmann, S., Nabasumba, C., et al. (2009) Lumefantrine for Treating Uncomplicated Malaria in African Children: A Randomised, Non-Inferiority Trial. PLOS ONE, 4, e7871. https://doi.org/10.1371/journal.pone.0007871
[5]
Somda, S.A.M., Parikh, S., Rouamba, N., Rosenthal, P.J., Zongo, I., Some, F.A., et al. (2014) Efficacy and Day 7 Plasma Piperaquine Concentrations in African Children Treated for Uncomplicated Malaria With. PLOS ONE, 9, e103200. https://doi.org/10.1371/journal.pone.0103200
[6]
Zongo, I., Milligan, P., Compaore, D., Some, A.F. and Greenwood, B. (2015) Randomized Noninferiority Trial of Dihydroartemisinin-Piperaquine Compared with Sulfadoxine-Pyrimethamine plus Amodiaquine for Seasonal Malaria Chemoprevention in Burkina Faso. Antimicrob Agents Chemother, 59, 4387-4396. https://doi.org/10.1128/AAC.04923-14
[7]
GansanE, A., Moriarty, L.F., Menard, D., Yerbanga, I., Ouedraogo, E., et al. (2021) Anti-Malarial Efficacy and Resistance Monitoring of Artemether-Lumefantrine and Dihydroartemisinin-Piperaquine Shows Inadequate Efficacy in Children in Burkina Faso, 2017-2018. Malaria Journal, 20, Article No. 48. https://doi.org/10.1186/s12936-021-03585-6
[8]
Dhorda, M., Amaratunga, C. and Dondorp, A.M. (2021) Artemisinin and Multidrug-Resistant Plasmodium Falciparum—A Threat for Malaria Control and Elimination. Current Opinion in Infectious Diseases, 34, 432-439. https://doi.org/10.1097/QCO.0000000000000766
[9]
Uwimana, A., Legrand, E., Stokes, B.H., Ndikumana, J.M., Warsame, M., Umulisa, N., et al. (2020) Emergence and Clonal Expansion of in Vitro Kelch13 R561H Mutant Parasites in Rwanda. Nature Medicine, 26, 1602-1608. https://doi.org/10.1038/s41591-020-1005-2
[10]
Tumwebaze, P.K., Conrad, M.D., Okitwi, M., Orena, S., Byaruhanga, O., et al. (2022) Decreased Susceptibility of Plasmodium Falciparum to Both Dihydroartemisinin and Lumefantrine in Northern Uganda. Nature Communications, 13, Article No. 6353. https://doi.org/10.1038/s41467-022-33873-x
[11]
Fola, A.A., Feleke, S.M., Mohammed, H., Brhane, B.G., Hennelly, C.M., Assefa, A., et al. (2023) Plasmodium Falciparum Resistant to Artemisinin and Diagnostics Have Emerged In. Nature Microbiology, 8, 1911-1919. https://doi.org/10.1038/s41564-023-01461-4
[12]
Bekono, B.D., Ntie-Kang, F., Onguene, P.A., Lifongo, L.L., Sippl, W., Fester, K., et al. (2020) The Potential of Anti-Malarial Compounds Derived from African Medicinal Plants: A Review of Pharmacological Evaluations from 2013 to 2019. Malaria Journal, 19, Article No. 183. https://doi.org/10.1186/s12936-020-03231-7
[13]
Pinheiro, L.C.S., Feitosa, L.M., Gandi, M.O., Silveira, F.F. and Boechat, N. (2019) The Development of Novel Compounds Against Malaria: Quinolines, Triazolpyridines, Pyrazolopyridines and Pyrazolopyrimidines. Molecules, 24, Article 4095. https://doi.org/10.3390/molecules24224095
[14]
Onguene, P.A., Ntie-Kang, F., Lifongo, L.L., Ndom, J.C. and Sippl, W. (2013) The Potential of Anti-Malarial Compounds Derived from African Medicinal Plants, Part I: A Pharmacological Evaluation of Alkaloids and Terpenoids the Potential of Anti-Malarial Compounds Derived from African Medicinal Plants, Part I: A Pharmacological. Malaria Journal, 12, Article No. 449. https://doi.org/10.1186/1475-2875-12-449
[15]
WHO (2013) WHO Traditional Medicine Strategy 2014-2023. https://www.who.int/publications/i/item/9789241506096
[16]
Ouoba, K., Lehmann, H., Zongo, A., Pabst, J.Y. and Semde, R. (2022) Prevalence of Traditional Medicines Use and Adverse Events: A Population-Based Cross-Sectional Survey in Burkina Faso. European Journal of Integrative Medicine, 51, Article ID: 102129. https://doi.org/10.1016/j.eujim.2022.102129
[17]
Ekor, M. (2014) The Growing Use of Herbal Medicines: Issues Relating to Adverse Reactions and Challenges in Monitoring Safety. Frontiers in Pharmacology, 4, Article 177. https://doi.org/10.3389/fphar.2013.00177
[18]
INSD (2022) Cinquième Recensement Général de la Population et de L’Habitation: Monographie de la Region des Hauts Bassins. https://www.insd.bf/sites/default/files/2023-02/MONOGRAPHIE%20DES%20HAUTS-BASSINS%205E%20RGPH.pdf
[19]
INSD (2022) Cinquième Recensement Général de la Population et de L’Habitation: Monographie de la Commune de Bobo Dioulasso. https://www.insd.bf/sites/default/files/2023-02/MONOGRAPHIE%20DE%20LA%20COMMUNE%20DE%20BOBO-DIOULASSO.pdf
[20]
Segda, A., Meda, R.N., Bangou, M.J., Koama, B.K., Ouoba, H.Y., Kagambega, W., et al. (2023) Ethnobotany of Medicinal Plants for Diabetes and Antioxidant Activity of Selected Phyllanthus Amarus Schum and Thonn., Chrysanthellum Americanum (L.) Vatke. and Striga Hermonthica ( Delile ) Benth. of Burkina Faso Material and M Ethods Study Area. Natural Products Chemistry & Research, 11, 1-7.
[21]
Basu, S. and Sahi, P.K. (2017) Malaria: An Update. Indian Journal of Pediatrics, 84, 521-528. https://doi.org/10.1007/s12098-017-2332-2
[22]
Nureye, D. and Assefa, S. (2020) Old and Recent Advances in Life Cycle, Pathogenesis, Diagnosis, Prevention, and Treatment of Malaria Including Perspectives in Ethiopia. The Scientific World Journal, 2020, Article ID: 1295381. https://doi.org/10.1155/2020/1295381
[23]
Yerbanga, R.S., Lucantoni, L., Lupidi, G., Dori, G.U., Tepongning, N.R., Nikiema, J.B., et al. (2012) Antimalarial Plant Remedies from Burkina Faso: Their Potential for Prophylactic Use. Journal of Ethnopharmacology, 140, 255-260. https://doi.org/10.1016/j.jep.2012.01.014
[24]
Tibiri, A., Sawadogo, R.W., Dao, A., Elkington, B.G., Ouedraogo, N. and Guissou, I.P. (2015) Indigenous Knowledge of Medicinal Plants Among Dozo Hunters: An Ethnobotanical Survey in Niamberla Village, Burkina Faso. The Journal of Alternative and Complementary Medicine, 21, 294-303. https://doi.org/10.1089/acm.2014.0016
[25]
Bonkian, L., Yerbanga, R., Coulibaly, M.T., Sangare, I., Ouedraogo, T., Traore, O., et al. (2017) Plants Against Malaria and Mosquitoes in Sahel Region of Burkina Faso: An Ethno-Botanical Survey. International Journal of Herbal Medicine, 5, 82-87.
[26]
Nadembega, P., Boussim, J.I., Nikiema, J.B., Poli, F. and Antognoni, F. (2011) Medicinal Plants in Baskoure, Kourittenga Province, Burkina Faso: An Ethnobotanical Study. Journal of Ethnopharmacology, 133, 378-395. https://doi.org/10.1016/j.jep.2010.10.010
[27]
Diarra, N., Klooster, C.V.T., Togola, A., Diallo, D., Willcox, M., de Jong, J. (2015) Ethnobotanical Study of Plants Used Against Malaria in Sélingué subdistrict, Mali. Journal of Ethnopharmacology, 166, 352-360. https://doi.org/10.1016/j.jep.2015.02.054
[28]
Ouattara, L.A., Ouattara, A., Tano, D.K. and Koffi, A.J. (2024) Phenolic Compound Content and Antioxidant Activity of Extracts from the Leaves of Anogeissus Leiocarpus (Combretaceae), a Plant Used in the North of Côte d’Ivoire for the Traditional Treatment of Gastrointestinal Disorders in Broiler Chickens. International Journal of Biochemistry Research & Review, 33, 52-61. https://doi.org/10.9734/ijbcrr/2024/v33i4869
[29]
Motto, A.E., Lawson-Evi, P., Bakoma, B., Eklu-Gadegbeku, K. and Aklikokou, K. (2021) Antihyperlipidemic and Antioxidant Properties of Hydro-Alcoholic Extracts from Anogeissus Leiocarpus (Combretaceae). Heliyon, 7, E06648. https://doi.org/10.1016/j.heliyon.2021.e06648
[30]
Zongo, E., Busuioc, A., Meda, R.N.T., Botezatu, A.V., Mihaila, M.D., et al. (2023) Exploration of the Antioxidant and Anti-Inflammatory Potential of Cassia Sieberiana DC and Piliostigma Thonningii (Schumach.) Milne-Redh, Traditionally Used in the Treatment of Hepatitis in the Hauts-Bassins Region of Burkina Faso. Pharmaceuticals, 16, Article 133. https://doi.org/10.3390/ph16010133
[31]
Dall’Acqua, S., Kumar, G., Sinan, K.I., Sut, S., Ferrarese, I., et al. (2020) An Insight into Cochlospermum Planchonii Extracts Obtained by Traditional and Green Extraction Methods: Relation between Chemical Compositions and Biological Properties by Multivariate Analysis. Industrial Crops and Products, 147, 1-8.
[32]
Muanda, F.N., Dicko, A. and Soulimani, R. (2010) Assessment of Polyphenolic Compounds, in Vitro Antioxidant and Anti-Inflammation Properties of Securidaca Longepedunculata Root Barks. Comptes Rendus Biologies, 333, 663-669. https://doi.org/10.1016/j.crvi.2010.07.002
[33]
Masuku, N.P., Unuofin, J.O. and Lebelo, S.L. (2020) Phytochemical Content, Antioxidant Activities and Androgenic Properties of Four South African Medicinal Plants. Journal of Herbmed Pharmacology, 9, 245-256. https://doi.org/10.34172/jhp.2020.32
[34]
Togbossi, L.A., Lawson-Evi, P., Diallo, A., Eklu-Gadegbeku, K. and Aklikokou, K. (2020) Evaluation of Antioxidant and Antidepressant Activity of Hydro-Alcoholic Extract of Ximenia Americana Stem Bark. The Journal of Phytopharmacology, 9, 323-328. https://doi.org/10.31254/phyto.2020.9506
[35]
Bakrim, W.B., Nurcahyanti, A.D.R., Dmirieh, M., Mahdi, I., Elgamal, A.M., El Raey, M.A., et al. (2022) Phytochemical Profiling of the Leaf Extract of Ximenia Americana Var. Caffra and Its Antioxidant, Antibacterial, and Antiaging Activities in Vitro and in Caenorhabditis Elegans: A Cosmeceutical and Dermatological Approach. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3486257. https://doi.org/10.1155/2022/3486257
[36]
Bazezew, A.M., Emire, S.A. and Sisay, M.T. (2021) Bioactive Composition, Free Radical Scavenging and Fatty Acid Profile of Ximenia Americana Grown in Ethiopia. Heliyon, 7, E07187. https://doi.org/10.1016/j.heliyon.2021.e07187
[37]
Tine, Y., Yang, Y., Renucci, F., Costa, J., Wele, A. and Paolini, J. (2017) LC-MS/MS Analysis of Flavonoid Compounds from Zanthoxylum Zanthoxyloides Extracts and Their Antioxidant Activities. Natural Product Communications, 12, 1865-1868. https://doi.org/10.1177/1934578X1701201213
[38]
Lamien-Meda, A., Kiendrebeogo, M., Compaore, M., Meda, R.N.T., Bacher, M., Koenig, K., et al. (2015) Quality Assessment and Antiplasmodial Activity of West African Cochlospermum Species. Phytochemistry, 119, 51-61. https://doi.org/10.1016/j.phytochem.2015.09.006
[39]
Vonthron-Senecheau, C., Weniger, B., Ouattara, M., Bi, F.T., Kamenan, A., Lobstein, A., et al. (2003) In Vitro Antiplasmodial Activity and Cytotoxicity of Ethnobotanically Selected Ivorian Plants. Journal of Ethnopharmacology, 87, 221-225. https://doi.org/10.1016/S0378-8741(03)00144-2
[40]
Gansane, A., Sanon, S., Ouattara, L.P., TraorE, A., Hutter, S., Ollivier, E., et al. (2010) Antiplasmodial Activity and Toxicity of Crude Extracts from Alternatives Parts of Plants Widely Used for the Treatment of Malaria in Burkina Faso: Contribution for Their Preservation. Parasitology Research, 106, 335-340. https://doi.org/10.1007/s00436-009-1663-y
[41]
Goodman, C.D., Hoang, A.T., Diallo, D., Malterud, K.E., McFadden, G.I. and Wangensteen, H. (2019) Anti-Plasmodial Effects of Zanthoxylum Zanthoxyloides. Planta Medica, 85, 1073-1079. https://doi.org/10.1055/a-0973-0067
[42]
Abdulrazak, N., Asiya, U., Usman, N., Unata, I. and Farida, A. (2015) Antiplasmodial Activity of Ethanolic Extract of Root and Stem Back of Cassia Sieberiana DC on Mice. Journal of Intercultural Ethnopharmacology, 4, Article 96.
[43]
Haidara, M., Bourdy, G., De Tommasi, N., Braca, A., Traore, K., et al. (2016) Medicinal Plants Used in Mali for the Treatment of Malaria and Liver Diseases. Natural Product Communications, 11, 339-352. https://doi.org/10.1177/1934578X1601100309
[44]
Kamanzi, Atindehou, K., Schmid, C., Brun, R., KonE, M.W. and Traore, D. (2004) Antitrypanosomal and Antiplasmodial Activity of Medicinal Plants from Côte d’Ivoire. Journal of Ethnopharmacology, 90, 221-227. https://doi.org/10.1016/j.jep.2003.09.032
[45]
Komane, B.M., Olivier, E.I. and Viljoen, A.M. (2011) Trichilia Emetica (Meliaceae)—A Review of Traditional Uses, Biological Activities and Phytochemistry. Phytochemistry Letters, 4, 1-9. https://doi.org/10.1016/j.phytol.2010.11.002
[46]
Robert, V. and Boudin, C. (2002) Biology of the Man-Mosquito Transmission of Plasmodium. Parasitology, 96, 6-20.
[47]
Portugaliza, H.P., Miyazaki, S., Geurten, F.J.A., Pell, C., Rosanas-Urgell, A., Janse, C.J., et al. (2020) Artemisinin Exposure at the Ring or Trophozoite Stage Impacts Plasmodium Falciparum Sexual Conversion Differently. eLife, 9, e60058. https://doi.org/10.7554/eLife.60058
[48]
Gautret, P., Landau, I., Tailhardat, Lc., Miltgen, F., Coquelin, F., Voza, T., et al. (2000) The Effects of Subcurative Doses of Chloroquine on Plasmodium Vinckei Petteri Gametocytes and on Their Infectivity to Mosquitoes. International Journal for Parasitology, 30, 1193-1198. https://doi.org/10.1016/S0020-7519(00)00107-7
[49]
Buckling, A., Ranford-Cartwright, L.C., Miles, A. and Read, A.F. (1999) Chloroquine Increases Plasmodium Falciparum Gametocytogenesis in Vitro. Parasitology, 118, 339-346. https://doi.org/10.1017/S0031182099003960
[50]
Wagner, H. (2011) Synergy Research: Approaching a New Generation of Phytopharmaceuticals. Fitoterapia, 82, 34-37. https://doi.org/10.1016/j.fitote.2010.11.016
[51]
Huang, R., Pei, L., Liu, Q., Chen, S., Dou, H. and Shu, G. (2019) Isobologram Analysis: A Comprehensive Review of Methodology and Current Research. Frontiers in Pharmacology, 10, Article 1222. https://doi.org/10.3389/fphar.2019.01222
[52]
Mlugu, E.M., Minzi, O., Kamuhabwa, A.A.R. and Aklillu, E. (2020) Prevalence and Correlates of Asymptomatic Malaria and Anemia on First Antenatal Care Visit among Pregnant Women in Southeast, Tanzania. International Journal of Environmental Research and Public Health, 17, Article 3123. https://doi.org/10.3390/ijerph17093123
[53]
Shankar, H. and Singh, M.P. (2022) Epidemiology of Malaria and Anemia in High and Low Districts of India. Frontiers in Public Health, 10, Article 9040898. https://doi.org/10.3389/fpubh.2022.940898
[54]
Ugwu, P., Anyaehie, U., Ugwu, A. and Ofem, O. (2021) Impact of Two Anti-Malaria Drugs (Artequin and Chloroquine) on Some Hematological Parameters in Wistar Rats. International Journal of Medicine and Health Development, 26, Article 175. https://doi.org/10.4103/ijmh.IJMH_53_20
[55]
Chaniad, P., Phuwajaroanpong, A., Techarang, T., Viriyavejakul, P., Chukaew, A. and Punsawad, C. (2022) Antiplasmodial Activity and Cytotoxicity of Plant Extracts from the Asteraceae and Rubiaceae Families. Heliyon, 8, E08848. https://doi.org/10.1016/j.heliyon.2022.e08848