|
Preclinical Verification of Modulated Electro-Hyperthermia
|
Abstract:
Modulated electro-hyperthermia (mEHT) targets tissue’s natural electric and thermal heterogeneities to heat the cancer cells selectively. The applied 13.56 MHz radiofrequency (RF) is a carrier of the low-frequency modulation. The high-frequency part was chosen to select the malignant lesion using the specialties of the tumor: the higher conductivity and dielectric constant of the tumor than its host. The electric field selects the tumor, and the low-frequency amplitude modulation polarizes and excites the transmembrane proteins of the malignant cells. The dominant absorption of the energy by the microscopic clusters of the membrane rafts acts like nanoparticle heating. Exciting the membrane produces various apoptotic signals. The processes were modeled using silico and phantom experiments, which proved the concept. The preclinical verification was made in vitro and in vivo, and in the end, clinical proofs validated the method. Our objective is to follow all the development steps from the laboratory to the clinics in a trilogy of articles. This present is the first part, which deals with in silico, phantom, and in vitro research.
[1] | Szasz, A. (2019) Thermal and Nonthermal Effects of Radiofrequency on Living State and Applications as an Adjuvant with Radiation Therapy. Journal of Radiation and Cancer Research, 10, 1-17. https://doi.org/10.4103/jrcr.jrcr_25_18 |
[2] | Szász, A.M., Lóránt, G., Szász, A. and Szigeti, G. (2023) The Immunogenic Connection of Thermal and Nonthermal Molecular Effects in Modulated Electro-Hyperthermia. Open Journal of Biophysics, 13, 103-142. https://doi.org/10.4236/ojbiphy.2023.134007 |
[3] | Szasz, A. (2022) Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers, 14, Article 901. https://doi.org/10.3390/cancers14040901 |
[4] | Papp, E., Vancsik, T., Kiss, E. and Szasz, O. (2017) Energy Absorption by the Membrane Rafts in the Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 7, 216-229. https://doi.org/10.4236/ojbiphy.2017.74016 |
[5] | Szasz, A., Vincze, G., Szasz, O. and Szasz, N. (2003) An Energy Analysis of Extracellular Hyperthermia. Electromagnetic Biology and Medicine, 22, 103-115. https://doi.org/10.1081/jbc-120024620 |
[6] | Szasz, O. (2014) Oncothermia—Nano-Heating Paradigm. Journal of Cancer Science & Therapy, 6, 117-121. https://doi.org/10.4172/1948-5956.1000259 |
[7] | Vincze, G., Szigeti, G.P., Andocs, G. and Szasz, A. (2015) Nanoheating without Artificial Nanoparticles. Biology and Medicine, 7, Article 249. |
[8] | Szasz, A. (2013) Electromagnetic Effects in Nanoscale Range. In: Shimizu, T. and Kondo, T., Eds., Cellular Response to Physical Stress and Therapeutic Applications, Nova Science Publishers, Inc., 55-81. |
[9] | Szasz, A. (2021) Therapeutic Basis of Electromagnetic Resonances and Signal-Modulation. Open Journal of Biophysics, 11, 314-350. https://doi.org/10.4236/ojbiphy.2021.113011 |
[10] | Nielsen, O.S., Horsman, M. and Overgaard, J. (2001) A Future for Hyperthermia in Cancer Treatment? European Journal of Cancer, 37, 1587-1589. https://doi.org/10.1016/s0959-8049(01)00193-9 |
[11] | Osinsky, S., Ganul, V., Protsyk, V., Knyazeva, O., Pivnjuk, V., Olijnichenko, G. and Olijnichenko, P. (2004) Local and Regional Hyperthermia in Combined Treatment of Malignant Tumors: 20 Years Experience in Ukraine. The Kadota Fund International Forum 2004, Awaji, 15-18 June 2004. |
[12] | Wust, P., Nadobny, J., Zschaeck, S. and Ghadjar, P. (2020) Physics of Hyperthermia—Is Physics Really against Us? In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, 346-376. https://www.cambridgescholars.com/product/978-1-5275-4817-6 |
[13] | Ferenczy, G.L. and Szasz, A. (2020) Technical Challenges and Proposals in Oncological Hyperthermia. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, 72-90. https://www.cambridgescholars.com/product/978-1-5275-4817-6 |
[14] | Lee, S. and Szasz, A. (2022) Immunogenic Effect of Modulated Electro-Hyperthermia (mEHT) in Solid Tumors. In: Rezaei, N., Ed., Interdisciplinary Cancer Research, Springer International Publishing, 1-28. https://doi.org/10.1007/16833_2022_74 |
[15] | Szasz, A. and Szasz, O. (2020) Time-Fractal Modulation of Modulated Electro-Hyperthermia (mEHT). In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, 377-415. https://www.cambridgescholars.com/product/978-1-5275-4817-6 |
[16] | Szasz, A. (2022) Time-Fractal Modulation—Possible Modulation Effects in Human Therapy. Open Journal of Biophysics, 12, 38-87. https://doi.org/10.4236/ojbiphy.2022.121003 |
[17] | Krenacs, T., Meggyeshazi, N., Forika, G., Kiss, E., Hamar, P., Szekely, T., et al. (2020) Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. International Journal of Molecular Sciences, 21, Article 6270. https://doi.org/10.3390/ijms21176270 |
[18] | Szasz, A. (2015) Bioelectromagnetic Paradigm of Cancer Treatment Oncothermia. In: Rosch, P.J., Ed., Bioelectromagnetic and Subtle Energy Medicine, CRC Press, 323-336. |
[19] | Szasz, O. (2019) Bioelectromagnetic Paradigm of Cancer Treatment—Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 9, 98-109. https://doi.org/10.4236/ojbiphy.2019.92008 |
[20] | RECOMMENDATION ITU-R SM.1056-1. Limitation of Radiation from Industrial, Scientific and Medical (ISM) Equipment. https://www.itu.int/dms_pubrec/itu-r/rec/sm/R-REC-SM.1056-1-200704-I!!PDF-E.pdf |
[21] | Szasz, A. (2021) The Capacitive Coupling Modalities for Oncological Hyperthermia. Open Journal of Biophysics, 11, 252-313. https://doi.org/10.4236/ojbiphy.2021.113010 |
[22] | Szasz, O., Szasz, M.A., Minnaar, C. and Szasz, A. (2017) Heating Preciosity—Trends in Modern Oncological Hyperthermia. Open Journal of Biophysics, 7, 116-144. https://doi.org/10.4236/ojbiphy.2017.73010 |
[23] | Yeo, S. (2015) Definitive Radiotherapy with Concurrent Oncothermia for Stage IIIB Non-Small-Cell Lung Cancer: A Case Report. Experimental and Therapeutic Medicine, 10, 769-772. https://doi.org/10.3892/etm.2015.2567 |
[24] | Chi, M., Mehta, M.P., Yang, K., Lai, H., Lin, Y., Ko, H., et al. (2020) Putative Abscopal Effect in Three Patients Treated by Combined Radiotherapy and Modulated Electrohyperthermia. Frontiers in Oncology, 10, Article 254. https://doi.org/10.3389/fonc.2020.00254 |
[25] | Fiorentini, G., Sarti, D., Mambrini, A., Hammarberg Ferri, I., Bonucci, M., Sciacca, P.G., et al. (2023) Hyperthermia Combined with Chemotherapy vs Chemotherapy in Patients with Advanced Pancreatic Cancer: A Multicenter Retrospective Observational Comparative Study. World Journal of Clinical Oncology, 14, 215-226. https://doi.org/10.5306/wjco.v14.i6.215 |
[26] | Lee, S.Y., Lee, D.H. and Cho, D. (2023) Modulated Electrohyperthermia in Locally Advanced Cervical Cancer: Results of an Observational Study of 95 Patients. Medicine, 102, e32727. https://doi.org/10.1097/md.0000000000032727 |
[27] | Oncotherm Kft (2006) Hyperthermia Device for the Selective Treatment and Monitoring of Surface Tissue. EP 2174689 A1 (Europe). |
[28] | Deering, W. and West, B.J. (1992) Fractal Physiology. IEEE Engineering in Medicine and Biology Magazine, 11, 40-46. https://doi.org/10.1109/51.139035 |
[29] | Bassingthwaighte, J.B., Leibovitch, L.S. and West, B.J. (1994) Fractal Physiology. Oxford University Press. https://doi.org/10.1007/978-1-4614-7572-9 |
[30] | Astumian, R.D., Weaver, J.C. and Adair, R.K. (1995) Rectification and Signal Averaging of Weak Electric Fields by Biological Cells. Proceedings of the National Academy of Sciences, 92, 3740-3743. https://doi.org/10.1073/pnas.92.9.3740 |
[31] | Sabah, N.H. (2000) Rectification in Biological Membranes. IEEE Engineering in Medicine and Biology Magazine, 19, 106-113. https://doi.org/10.1109/51.816251 |
[32] | Granted Patents: CN 104640601 B, China (2016); EP 2888003 A1, Europe (2016); 10-1714280, South Korea (2017); 6127142, Japan (2017); 2626899, Russia (2017); US 9,937,357 B2, USA (2018). |
[33] | Wust, P., Stein, U. and Ghadjar, P. (2021) Non-Thermal Membrane Effects of Electromagnetic Fields and Therapeutic Applications in Oncology. International Journal of Hyperthermia, 38, 715-731. https://doi.org/10.1080/02656736.2021.1914354 |
[34] | Wissler, E.H. (1998) Pennes’ 1948 Paper Revisited. Journal of Applied Physiology, 85, 35-41. https://doi.org/10.1152/jappl.1998.85.1.35 |
[35] | Ostadhossein, R. and Hoseinzadeh, S. (2022) The Solution of Pennes’ Bio-Heat Equation with a Convection Term and Nonlinear Specific Heat Capacity Using Adomian Decomposition. Journal of Thermal Analysis and Calorimetry, 147, 12739-12747. https://doi.org/10.1007/s10973-022-11445-x |
[36] | Cloutier, M. and Wang, E. (2011) Dynamic Modeling and Analysis of Cancer Cellular Network Motifs. Integrative Biology, 3, 724-732. https://doi.org/10.1039/c0ib00145g |
[37] | Hernandez-Nunez, L., Chen, A., Budelli, G., Berck, M.E., Richter, V., Rist, A., et al. (2021) Synchronous and Opponent Thermosensors Use Flexible Cross-Inhibition to Orchestrate Thermal Homeostasis. Science Advances, 7, eabg6707. https://doi.org/10.1126/sciadv.abg6707 |
[38] | Mathur-De Vré, R. (1984) Biomedical Implications of the Relaxation Behaviour of Water Related to NMR Imaging. The British Journal of Radiology, 57, 955-976. https://doi.org/10.1259/0007-1285-57-683-955 |
[39] | Benson, H. (1983) The Relaxation Response: Its Subjective and Objective Historical Precedents and Physiology. Trends in Neurosciences, 6, 281-284. https://doi.org/10.1016/0166-2236(83)90120-0 |
[40] | Li, X., Sun, S., Yao, J. and Sun, Z. (2020) Using Relaxation Time to Characterize Biological Effects of Different Mutagens. Scientific Reports, 10, Article No. 13941. https://doi.org/10.1038/s41598-020-70600-2 |
[41] | West, B.J. (1990) Fractal Physiology and Chaos in Medicine. World Scientific. https://doi.org/10.1142/1025 |
[42] | Musha, T. and Sawada, Y. (1994) Physics of the Living State. IOS Press. |
[43] | Herman, A.B., Savage, V.M. and West, G.B. (2011) A Quantitative Theory of Solid Tumor Growth, Metabolic Rate and Vascularization. PLOS ONE, 6, e22973. https://doi.org/10.1371/journal.pone.0022973 |
[44] | West, G.B., Brown, J.H. and Enquist, B.J. (2004) Growth Models Based on First Principles or Phenomenology? Functional Ecology, 18, 188-196. https://doi.org/10.1111/j.0269-8463.2004.00857.x |
[45] | Szasz, O., Vincze, G., Szigeti, G.P., Benyo, Z. and Szasz, A. (2018) An Allometric Approach of Tumor-Angiogenesis. Medical Hypotheses, 116, 74-78. https://doi.org/10.1016/j.mehy.2018.03.015 |
[46] | Szasz, O. and Szasz, A. (2021) Approaching Complexity: Hyperthermia Dose and Its Possible Measurement in Oncology. Open Journal of Biophysics, 11, 68-132. https://doi.org/10.4236/ojbiphy.2021.111002 |
[47] | Lee, S., Szigeti, G. and Szasz, A. (2018) Oncological Hyperthermia: The Correct Dosing in Clinical Applications. International Journal of Oncology, 54, 627-643. https://doi.org/10.3892/ijo.2018.4645 |
[48] | Szasz, O., Szigeti, G.P., Vancsik, T. and Szasz, A. (2018) Hyperthermia Dosing and Depth of Effect. Open Journal of Biophysics, 8, 31-48. https://doi.org/10.4236/ojbiphy.2018.81004 |
[49] | Wust, P., Ghadjar, P., Nadobny, J., Beck, M., Kaul, D., Winter, L., et al. (2019) Physical Analysis of Temperature-Dependent Effects of Amplitude-Modulated Electromagnetic Hyperthermia. International Journal of Hyperthermia, 36, 1245-1253. https://doi.org/10.1080/02656736.2019.1692376 |
[50] | Vincze, G. and Szasz, A. (2018) Similarities of Modulation by Temperature and by Electric Field. Open Journal of Biophysics, 8, 95-103. https://doi.org/10.4236/ojbiphy.2018.83008 |
[51] | Minnaar, C.A. and Szasz, A. (2022) Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field. Cells, 11, Article 1838. https://doi.org/10.3390/cells11111838 |
[52] | Szasz, O., Szigeti, G.P., Szasz, A. and Benyo, Z. (2018) Role of Electrical Forces in Angiogenesis. Open Journal of Biophysics, 8, 49-67. https://doi.org/10.4236/ojbiphy.2018.82005 |
[53] | Wust, P., Veltsista, P.D., Oberacker, E., Yavvari, P., Walther, W., Bengtsson, O., et al. (2022) Radiofrequency Electromagnetic Fields Cause Non-Temperature-Induced Physical and Biological Effects in Cancer Cells. Cancers, 14, Article 5349. https://doi.org/10.3390/cancers14215349 |
[54] | Mills, R.E. (1982) Fröhlich’s Nonthermal Excitations in Biological Systems. Physics Letters A, 91, 91-94. https://doi.org/10.1016/0375-9601(82)90274-2 |
[55] | Gramse, G., Dols-Perez, A., Edwards, M.A., Fumagalli, L. and Gomila, G. (2013) Nanoscale Measurement of the Dielectric Constant of Supported Lipid Bilayers in Aqueous Solutions with Electrostatic Force Microscopy. Biophysical Journal, 104, 1257-1262. https://doi.org/10.1016/j.bpj.2013.02.011 |
[56] | Dharia, S. (2011) Spatially and Temporally Resolving Radio-Frequency Changes in Effective Cell Membrane Capacitance. PhD Theses, University of Utah. |
[57] | Pike, L.J. (2003) Lipid Rafts: Bringing Order to Chaos. Journal of Lipid Research, 44, 655-667. https://doi.org/10.1194/jlr.r200021-jlr200 |
[58] | Horváth, I., Multhoff, G., Sonnleitner, A. and Vígh, L. (2008) Membrane-Associated Stress Proteins: More than Simply Chaperones. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1778, 1653-1664. https://doi.org/10.1016/j.bbamem.2008.02.012 |
[59] | Govorov, A.O. and Richardson, H.H. (2007) Generating Heat with Metal Nanoparticles. Nano Today, 2, 30-38. https://doi.org/10.1016/s1748-0132(07)70017-8 |
[60] | Dutz, S. and Hergt, R. (2013) Magnetic Nanoparticle Heating and Heat Transfer on a Microscale: Basic Principles, Realities and Physical Limitations of Hyperthermia for Tumour Therapy. International Journal of Hyperthermia, 29, 790-800. https://doi.org/10.3109/02656736.2013.822993 |
[61] | Wust, P., Kortüm, B., Strauss, U., Nadobny, J., Zschaeck, S., Beck, M., et al. (2020) Non-Thermal Effects of Radiofrequency Electromagnetic Fields. Scientific Reports, 10, Article No. 13488. https://doi.org/10.1038/s41598-020-69561-3 |
[62] | Vincze, G. and Sziget, G.P. (2016) Reorganization of the Cytoskeleton. Journal of Advances in Biology, 9, 1872-1882. |
[63] | Vincze, G. and Szasz, A. (2015) Reorganization of Actin Filaments and Microtubules by Outside Electric Field. Journal of Advances in Biology, 8, 1514-1518. |
[64] | Vincze, G., Szasz, N. and Szasz, A. (2004) On the Thermal Noise Limit of Cellular Membranes. Bioelectromagnetics, 26, 28-35. https://doi.org/10.1002/bem.20051 |
[65] | Vincze, G. (2015) Effect of Cellular Membrane Resistivity Inhomogeneity on the Thermal Noise-Limit. Journal of Advances in Physics, 11, 3171-3183. https://doi.org/10.24297/jap.v11i3.6859 |
[66] | Guo, J., Lao, Y. and Chang, D.C. (2009) Calcium and Apoptosis. In: Lajtha, A. and Mikoshiba, K., Eds., Handbook of Neurochemistry and Molecular Neurobiology, Springer, 597-622. https://doi.org/10.1007/978-0-387-30370-3_33 |
[67] | Szasz, A. (2017) Oncothermia Is a Kind of Hyperthermia. Hot Topics: Temperature, Dose, Selectivity. Oncothermia Journal, 20, 105-120. |
[68] | Chi, K.-H. and Wang, Y.-S. (2017) Private Communication. Department of Radiation Therapy & Oncology Shin Kong Wu Ho-Su Memorial Hospital Taipei University and Molecular Medicine and Biochemical Engineering, National Chiao Tung University, Hsinchu, Taiwan Region. |
[69] | Hossain, M.T., Prasad, B., Park, K.S., Lee, H.J., Ha, Y.H., Lee, S.K., et al. (2016) Simulation and Experimental Evaluation of Selective Heating Characteristics of 13.56 MHz Radiofrequency Hyperthermia in Phantom Models. International Journal of Precision Engineering and Manufacturing, 17, 253-256. https://doi.org/10.1007/s12541-016-0033-9 |
[70] | Nagy, G., Meggyeshazi, N. and Szasz, O. (2013) Deep Temperature Measurements in Oncothermia Processes. Conference Papers in Medicine, 2013, Article 685264. https://doi.org/10.1155/2013/685264 |
[71] | Orczy-Timko, B. (2020) Phantom Measurements with the EHY-2030 Device. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, 416-428. |
[72] | Herzog, A. (2008) Messung der Temperaturverteilung am Modell der nicht perfundierten Schweineleber bei lokaler Hyperthermie mit Kurzwellen mit 13,56 MHz. Forum Hyperthermie, 1/10, 30-34. |
[73] | Szigeti, G.P., Szas, A.M. and Szasz, O. (2020) Oncothermia Is a Kind of Oncological Hyper-Thermia—A Review. Oncothermia Journal, Special Edition, 8-48. |
[74] | Szasz, A. (2023) Memristor Hypothesis in Malignant Charge Distribution. Open Journal of Biophysics, 13, 51-92. |
[75] | Andocs, G., Szasz, O. and Szasz, A. (2009) Oncothermia Treatment of Cancer: From the Laboratory to Clinic. Electromagnetic Biology and Medicine, 28, 148-165. https://doi.org/10.1080/15368370902724633 |
[76] | Jeon, T., Yang, H., Lee, C.G., Oh, S.T., Seo, D., Baik, I.H., et al. (2016) Electro-Hyperthermia up-Regulates Tumour Suppressor Septin 4 to Induce Apoptotic Cell Death in Hepatocellular Carcinoma. International Journal of Hyperthermia, 32, 648-656. https://doi.org/10.1080/02656736.2016.1186290 |
[77] | Yang, K., Huang, C., Chi, M., Chiang, H., Wang, Y., Hsia, C., et al. (2016) In vitro Comparison of Conventional Hyperthermia and Modulated Electro-Hyperthermia. Oncotarget, 7, 84082-84092. https://doi.org/10.18632/oncotarget.11444 |
[78] | Tsang, Y., Huang, C., Yang, K., Chi, M., Chiang, H., Wang, Y., et al. (2015) Improving Immunological Tumor Microenvironment Using Electro-Hyperthermia Followed by Dendritic Cell Immunotherapy. BMC Cancer, 15, Article No. 708. https://doi.org/10.1186/s12885-015-1690-2 |
[79] | Yang, W., Han, G.H., Shin, H., Lee, E., Cho, H., Chay, D.B., et al. (2018) Combined Treatment with Modulated Electro-Hyperthermia and an Autophagy Inhibitor Effectively Inhibit Ovarian and Cervical Cancer Growth. International Journal of Hyperthermia, 36, 9-20. https://doi.org/10.1080/02656736.2018.1528390 |
[80] | McDonald, M., Corde, S., Lerch, M., Rosenfeld, A., Jackson, M. and Tehei, M. (2018) First in vitro Evidence of Modulated Electro-Hyperthermia Treatment Performance in Combination with Megavoltage Radiation by Clonogenic Assay. Scientific Reports, 8, Article No. 16608. https://doi.org/10.1038/s41598-018-34712-0 |
[81] | Forika, G., Balogh, A., Vancsik, T., Zalatnai, A., Petovari, G., Benyo, Z., et al. (2020) Modulated Electro-Hyperthermia Resolves Radioresistance of Panc1 Pancreas Adenocarcinoma and Promotes DNA Damage and Apoptosis in vitro. International Journal of Molecular Sciences, 21, Article 5100. https://doi.org/10.3390/ijms21145100 |
[82] | Kuo, I., Lee, J., Wang, Y., Chiang, H., Huang, C., Hsieh, P., et al. (2020) Potential Enhancement of Host Immunity and Anti-Tumor Efficacy of Nanoscale Curcumin and Resveratrol in Colorectal Cancers by Modulated Electro-Hyperthermia. BMC Cancer, 20, Article No. 603. https://doi.org/10.1186/s12885-020-07072-0 |
[83] | Vancsik, T., Forika, G., Balogh, A., Kiss, E. and Krenacs, T. (2019) Modulated Electro‐Hyperthermia Induced P53 Driven Apoptosis and Cell Cycle Arrest Additively Support Doxorubicin Chemotherapy of Colorectal Cancer in vitro. Cancer Medicine, 8, 4292-4303. https://doi.org/10.1002/cam4.2330 |
[84] | Kiss, E., Vancsik, T., Forika, G., Hamar, P. and Krenacs, T. (2017) Testing Modulated Electro-Hyperthermia Using C26 Colorectal Carcinoma Cell Line in vitro. Oncothermia Journal, 20, 217-227. |
[85] | Kao, P.H., Chen, C., Tsang, Y., Lin, C., Chiang, H., Huang, C., et al. (2020) Relationship between Energy Dosage and Apoptotic Cell Death by Modulated Electro-Hyperthermia. Scientific Reports, 10, Article No. 8936. https://doi.org/10.1038/s41598-020-65823-2 |
[86] | Cha, J., Jeon, T., Lee, C.G., Oh, S.T., Yang, H., Choi, K., et al. (2015) Electro-Hyperthermia Inhibits Glioma Tumorigenicity through the Induction of E2F1-Mediated Apoptosis. International Journal of Hyperthermia, 31, 784-792. https://doi.org/10.3109/02656736.2015.1069411 |
[87] | Andocs, G., Rehman, M.U., Zhao, Q., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cells. Cell Death Discovery, 2, Article No. 16039. https://doi.org/10.1038/cddiscovery.2016.39 |
[88] | Andocs, G., Rehman, M.U. and Zhao, Q. (2015) Nanoheating without Artificial Nanoparticles Part II. Experimental Support of the Nanoheating Concept of the Modulated Electro-Hyperthermia Method, Using U937 Cell Suspension Model. Biology and Medicine, 7, 1-9. |
[89] | Tsang, Y., Chi, K., Huang, C., Chi, M., Chiang, H., Yang, K., et al. (2019) Modulated Electro-Hyperthermia-Enhanced Liposomal Drug Uptake by Cancer Cells. International Journal of Nanomedicine, 14, 1269-1279. https://doi.org/10.2147/ijn.s188791 |
[90] | Chen, C., Chen, C., Li, J., Chen, Y., Wang, C., Wang, Y., et al. (2019) Presence of Gold Nanoparticles in Cells Associated with the Cell-Killing Effect of Modulated Electro-Hyperthermia. ACS Applied Bio Materials, 2, 3573-3581. https://doi.org/10.1021/acsabm.9b00453 |
[91] | Schvarcz, C.A., Danics, L., Krenács, T., Viana, P., Béres, R., Vancsik, T., et al. (2021) Modulated Electro-Hyperthermia Induces a Prominent Local Stress Response and Growth Inhibition in Mouse Breast Cancer Isografts. Cancers, 13, Article 1744. https://doi.org/10.3390/cancers13071744 |
[92] | Matsumoto, Y., Hayshi, J., Sekino, Y., Fukumitsu, N., Saito, T., Ishikawa, H. and Sakurai, H. (2018) Radiosensitization Effect of Novel Cancer Therapy, mEHT. Toward Overcoming Treatment Resistance. Oncothermia Journal, 25, 68-84. |
[93] | Prasad, B., Kim, S., Cho, W., Kim, J.K., Kim, Y.A., Kim, S., et al. (2019) Quantitative Estimation of the Equivalent Radiation Dose Escalation Using Radiofrequency Hyperthermia in Mouse Xenograft Models of Human Lung Cancer. Scientific Reports, 9, Article No. 3942. https://doi.org/10.1038/s41598-019-40595-6 |
[94] | Brunner, G. (2006) Zelluläre Hyperthermie-Effekte in vitro in einem Progressionsmodell des Plattenepithelkarzinoms. Klinik Hornheide, Munster University, Germany, Hyperthermia Symposium, Cologne, 22-23 September 2006. |
[95] | Andocs, G., Rehman, M.U., Zhao, Q., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cells. Cell Death Discovery, 2, Article No. 16039. https://doi.org/10.1038/cddiscovery.2016.39 |
[96] | Gannon, C.J., Patra, C.R., Bhattacharya, R., Mukherjee, P. and Curley, S.A. (2008) Intracellular Gold Nanoparticles Enhance Non-Invasive Radiofrequency Thermal Destruction of Human Gastrointestinal Cancer Cells. Journal of Nanobiotechnology, 6, Article No. 2. https://doi.org/10.1186/1477-3155-6-2 |
[97] | Forika, G., Balogh, A. and Vancsik, T. (2019) Elevated Apoptosis and Tumor Stem Cell Destruction in a Radioresistant Pancreatic Adenocarcinoma Cell Line When Radiotherapy Is Combined with Modulated Electrohyperthermia. Oncothermia Journal, 26, 90-98. |
[98] | Meggyeshazi, N., Andocs, G. and Krenacs, T. (2012) Modulated Electro-Hyperthermia Induced Programmed Cell Death in HT29 Colorectal Carcinoma Xenograft. Virchows Archiv, 461, S131-S132. |
[99] | Danics, L., Schvarcz, C.A., Viana, P., Vancsik, T., Krenács, T., Benyó, Z., et al. (2020) Exhaustion of Protective Heat Shock Response Induces Significant Tumor Damage by Apoptosis after Modulated Electro-Hyperthermia Treatment of Triple Negative Breast Cancer Isografts in Mice. Cancers, 12, Article 2581. https://doi.org/10.3390/cancers12092581 |
[100] | Meggyeshazi, N., Andocs, G., Spisak, S., et al. (2013) Modulated Electrohyperthermia Causes Caspase Independent Programmed Cell Death in HT29 Colon Cancer Xenografts. Virchows Archiv, 463, 329. |
[101] | Meggyeshazi, N., Andocs, G., Balogh, L., Balla, P., Kiszner, G., Teleki, I., et al. (2014) DNA Fragmentation and Caspase-Independent Programmed Cell Death by Modulated Electrohyperthermia. Strahlentherapie und Onkologie, 190, 815-822. https://doi.org/10.1007/s00066-014-0617-1 |
[102] | Meggyesházi, N., Andócs, G., Spisák, S. and Krenács, T. (2013) Early Changes in Mrna and Protein Expression Related to Cancer Treatment by Modulated Electrohyperthermia. Conference Papers in Medicine, 2013, Article 249563. https://doi.org/10.1155/2013/249563 |
[103] | Janigro, D., Perju, C., Fazio, V., Hallene, K., Dini, G., Agarwal, M.K., et al. (2006) Alternating Current Electrical Stimulation Enhanced Chemotherapy: A Novel Strategy to Bypass Multidrug Resistance in Tumor Cells. BMC Cancer, 6, Article No. 72. https://doi.org/10.1186/1471-2407-6-72 |
[104] | Krenacs, T. and Benyo, Z. (2017) Tumor Specific Stress and Immune Response Induced by Modulated Electrohyperthermia in Relation to Tumor Metabolic Profiles. Oncothermia Journal, 20, 264-272. |
[105] | Forika, G., Vancsik, T., Kiss, E., Hujber, Z., Sebestyen, A., Krencz, I., et al. (2017) The Efficiency of Modulated Electro-Hyperthermia May Correlate with the Tumor Metabolic Profiles. Oncothermia Journal, 20, 228-235. |
[106] | Li, J., Chauve, L., Phelps, G., Brielmann, R.M. and Morimoto, R.I. (2016) E2F Coregulates an Essential HSF Developmental Program that Is Distinct from the Heat-Shock Response. Genes & Development, 30, 2062-2075. https://doi.org/10.1101/gad.283317.116 |
[107] | Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia: Principles and Practices. Springer Science. https://doi.org/10.1007/978-90-481-9498-8 |
[108] | Vancsik, T., Máthé, D., Horváth, I., Várallyaly, A.A., Benedek, A., Bergmann, R., et al. (2021) Modulated Electro-Hyperthermia Facilitates NK-Cell Infiltration and Growth Arrest of Human A2058 Melanoma in a Xenograft Model. Frontiers in Oncology, 11, Article 590764. https://doi.org/10.3389/fonc.2021.590764 |