全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于改进重叠组稀疏的遥感图像去噪算法
Remote Sensing Image Denoising Algorithm Based on Improved Overlap Group Sparsity

DOI: 10.12677/aam.2024.137337, PP. 3527-3540

Keywords: 脉冲噪声,重叠组稀疏,交替方向乘子法,自适应中值滤波,图像去噪
Impulse Noise
, Overlapping Group Sparsity, ADMM, Adaptive Median Filtering, Image Denoising

Full-Text   Cite this paper   Add to My Lib

Abstract:

脉冲噪声对遥感图像的质量有着显著的负面影响,它会破坏图像的连续性,降低图像的可视性和信息的准确性,从而影响遥感图像的应用效果。本文通过融合自适应中值滤波技术和组稀疏模型,设计了基于改进重叠组稀疏的模型,以有效地消除遥感图像的脉冲噪声,并消除梯度伪影现象。由于本文所提出的模型是非凸问题,我们利用最大–最小化(MM)方法和交替方向乘子法(ADMM)对模型进行求解。实验结果表明,本文提出的模型在峰值信噪比(PSNR)和结构相似度(SSIM)方面优于其他四种算法。
Impulse noise has a significant negative effect on the quality of remote sensing image. It can destroy the continuity of image, reduce the visibility and sourcing circumstances of image, and affect the application effect of remote sensing image. By fusing adaptive median filter and group sparse model, a new model based on improved overlap group sparse model is designed to eliminate impulse noise and gradient artifacts in remote sensing images. Since the model presented in this paper is non-convex, we use the maximum-minimum (MM) method and the alternating direction multiplier (ADMM) method to solve the model. Experimental results show that the proposed model outperforms the other four algorithms in Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).

References

[1]  Hwang, H. and Haddad, R.A. (1995) Adaptive Median Filters: New Algorithms and Results. IEEE Transactions on Image Processing, 4, 499-502.
https://doi.org/10.1109/83.370679
[2]  Engino?lu, S., Erkan, U. and Memi?, S. (2019) Pixel Similarity-Based Adaptive Riesz Mean Filter for Salt-and-Pepper Noise Removal. Multimedia Tools and Applications, 78, 35401-35418.
https://doi.org/10.1007/s11042-019-08110-1
[3]  Zhang, P. and Li, F. (2014) A New Adaptive Weighted Mean Filter for Removing Salt-and-Pepper Noise. IEEE Signal Processing Letters, 21, 1280-1283.
https://doi.org/10.1109/lsp.2014.2333012
[4]  Thanh, D.N.H., Hien, N.N., Kalavathi, P. and Prasath, V.B.S. (2020) Adaptive Switching Weight Mean Filter for Salt and Pepper Image Denoising. Procedia Computer Science, 171, 292-301.
https://doi.org/10.1016/j.procs.2020.04.031
[5]  Wang, Y., Wang, J., Song, X. and Han, L. (2016) An Efficient Adaptive Fuzzy Switching Weighted Mean Filter for Salt-and-Pepper Noise Removal. IEEE Signal Processing Letters, 23, 1582-1586.
https://doi.org/10.1109/lsp.2016.2607785
[6]  Khan, K.B., Shahid, M., Ullah, H., Rehman, E. and Khan, M.M. (2018) Adaptive Trimmed Mean Autoregressive Model for Reduction of Poisson Noise in Scintigraphic Images. IIUM Engineering Journal, 19, 68-79.
https://doi.org/10.31436/iiumej.v19i2.835
[7]  Singh, A., Sethi, G. and Kalra, G.S. (2020) Spatially Adaptive Image Denoising via Enhanced Noise Detection Method for Grayscale and Color Images. IEEE Access, 8, 112985-113002.
https://doi.org/10.1109/access.2020.3003874
[8]  Mújica-Vargas, D., de Jesús Rubio, J., Kinani, J.M.V. and Gallegos-Funes, F.J. (2017) An Efficient Nonlinear Approach for Removing Fixed-Value Impulse Noise from Grayscale Images. Journal of Real-Time Image Processing, 14, 617-633.
https://doi.org/10.1007/s11554-017-0746-8
[9]  Engino?lu, S., Erkan, U. and Memi?, S. (2019) Pixel Similarity-Based Adaptive Riesz Mean Filter for Salt-and-Pepper Noise Removal. Multimedia Tools and Applications, 78, 35401-35418.
https://doi.org/10.1007/s11042-019-08110-1
[10]  Li, Z., Liu, G., Xu, Y. and Cheng, Y. (2014) Modified Directional Weighted Filter for Removal of Salt & Pepper Noise. Pattern Recognition Letters, 40, 113-120.
https://doi.org/10.1016/j.patrec.2013.12.022
[11]  Lone, M.R. and Khan, E. (2022) A Good Neighbor Is a Great Blessing: Nearest Neighbor Filtering Method to Remove Impulse Noise. Journal of King Saud University-Computer and Information Sciences, 34, 9942-9952.
https://doi.org/10.1016/j.jksuci.2021.12.020
[12]  Rudin, L.I., Osher, S. and Fatemi, E. (1992) Nonlinear Total Variation Based Noise Removal Algorithms. Physica D: Nonlinear Phenomena, 60, 259-268.
https://doi.org/10.1016/0167-2789(92)90242-f
[13]  Liu, J., Huang, T., Selesnick, I.W., Lv, X. and Chen, P. (2015) Image Restoration Using Total Variation with Overlapping Group Sparsity. Information Sciences, 295, 232-246.
https://doi.org/10.1016/j.ins.2014.10.041
[14]  Shi, M., Han, T. and Liu, S. (2016) Total Variation Image Restoration Using Hyper-Laplacian Prior with Overlapping Group Sparsity. Signal Processing, 126, 65-76.
https://doi.org/10.1016/j.sigpro.2015.11.022
[15]  Selesnick, I.W. and Chen, P. (2013) Total Variation Denoising with Overlapping Group Sparsity. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, 26-31 May 2013, 5696-5700.
https://doi.org/10.1109/icassp.2013.6638755
[16]  Adam, T. and Paramesran, R. (2018) Image Denoising Using Combined Higher Order Non-Convex Total Variation with Overlapping Group Sparsity. Multidimensional Systems and Signal Processing, 30, 503-527.
https://doi.org/10.1007/s11045-018-0567-3
[17]  Adam, T. and Paramesran, R. (2019) Hybrid Non-Convex Second-Order Total Variation with Applications to Non-Blind Image Deblurring. Signal, Image and Video Processing, 14, 115-123.
https://doi.org/10.1007/s11760-019-01531-3
[18]  Adam, T., Paramesran, R., Mingming, Y. and Ratnavelu, K. (2021) Combined Higher Order Non-Convex Total Variation with Overlapping Group Sparsity for Impulse Noise Removal. Multimedia Tools and Applications, 80, 18503-18530.
https://doi.org/10.1007/s11042-021-10583-y
[19]  Rodríguez, P. (2013) Total Variation Regularization Algorithms for Images Corrupted with Different Noise Models: A Review. Journal of Electrical and Computer Engineering, 2013, 1-18.
https://doi.org/10.1155/2013/217021
[20]  Gao, Y., Liu, F. and Yang, X. (2017) Total Generalized Variation Restoration with Non-Quadratic Fidelity. Multidimensional Systems and Signal Processing, 29, 1459-1484.
https://doi.org/10.1007/s11045-017-0512-x
[21]  Wang, Y., Yang, J., Yin, W. and Zhang, Y. (2008) A New Alternating Minimization Algorithm for Total Variation Image Reconstruction. SIAM Journal on Imaging Sciences, 1, 248-272.
https://doi.org/10.1137/080724265
[22]  Chan, R.H., Tao, M. and Yuan, X. (2013) Constrained Total Variation Deblurring Models and Fast Algorithms Based on Alternating Direction Method of Multipliers. SIAM Journal on Imaging Sciences, 6, 680-697.
https://doi.org/10.1137/110860185
[23]  Chan, S.H., Khoshabeh, R., Gibson, K.B., Gill, P.E. and Nguyen, T.Q. (2011) An Augmented Lagrangian Method for Total Variation Video Restoration. IEEE Transactions on Image Processing, 20, 3097-3111.
https://doi.org/10.1109/tip.2011.2158229
[24]  Liu, Q., Yang, C., Gu, Y. and So, H.C. (2018) Robust Sparse Recovery via Weakly Convex Optimization in Impulsive Noise. Signal Processing, 152, 84-89.
https://doi.org/10.1016/j.sigpro.2018.05.020
[25]  Wen, F., Pei, L., Yang, Y., Yu, W. and Liu, P. (2017) Efficient and Robust Recovery of Sparse Signal and Image Using Generalized Nonconvex Regularization. IEEE Transactions on Computational Imaging, 3, 566-579.
https://doi.org/10.1109/tci.2017.2744626
[26]  Yuan, G. and Ghanem, B. (2019) TV: A Sparse Optimization Method for Impulse Noise Image Restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 352-364.
https://doi.org/10.1109/tpami.2017.2783936
[27]  Gong, P., Zhang, C., Lu, Z., Huang, J. and Ye, J. (2013) A General Iterative Shrinkage and Thresholding Algorithm for Non-Convex Regularized Optimization Problems. Proceedings of the 30th International Conference on International Conference on Machine Learning, Atlanta, 16-21 June 2013, 37-45.
[28]  Kuang, S., Chao, H. and Li, Q. (2018) Matrix Completion with Capped Nuclear Norm via Majorized Proximal Minimization. Neurocomputing, 316, 190-201.
https://doi.org/10.1016/j.neucom.2018.07.066
[29]  Yin, M., Adam, T., Paramesran, R. and Hassan, M.F. (2022) An ?0-Overlapping Group Sparse Total Variation for Impulse Noise Image Restoration. Signal Processing: Image Communication, 102, Article 116620.
https://doi.org/10.1016/j.image.2021.116620
[30]  Liu, G., Huang, T., Liu, J. and Lv, X. (2015) Total Variation with Overlapping Group Sparsity for Image Deblurring under Impulse Noise. PLOS ONE, 10, e0122562.
https://doi.org/10.1371/journal.pone.0122562

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133