全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多疾病治疗潜能:二肽基肽酶4抑制剂的应用
The Potential for Multi-Disease Treatment: Applications of Dipeptidyl Peptidase Inhibitors

DOI: 10.12677/acm.2024.1472169, PP. 1469-1477

Keywords: 二肽基肽酶4,DPP4抑制剂,疾病
Dipeptidyl Peptidase-4
, Dipeptidyl Peptidase-4 Inhibitors, Disease

Full-Text   Cite this paper   Add to My Lib

Abstract:

二肽基肽酶4 (Dipeptidyl Peptidase-4, DPP4)是一种跨膜蛋白,具有多种生物学功能,如参与血糖调节、免疫调节和炎症反应。DPP4以膜结合和可溶形式存在,广泛分布于多种组织和体液中。而DPP4抑制剂通过延长胰高血糖素样肽-1 (Glucagon-like peptide-1, GLP-1)和葡萄糖依赖性促胰岛素多肽(Glucose- dependent insulinotropic polypeptide, GIP)的半衰期,有效控制2型糖尿病(Type 2 diabetes, T2DM)的血糖水平。此外,DPP4抑制剂在动脉粥样硬化(AS)、高血压、心力衰竭、血脂异常和神经退行性疾病等方面也展示出良好的治疗效果。本文综述了DPP4及其抑制剂在多种疾病中的作用机制和临床应用,探讨了其在现代医学中的潜在价值。
Dipeptidyl Peptidase-4 (DPP4) is a transmembrane protein with various biological functions, including involvement in glucose regulation, immune modulation, and inflammatory response. DPP4 exists in both membrane-bound and soluble forms and is widely distributed across multiple tissues and body fluids. DPP4 inhibitors effectively control blood glucose levels in Type 2 diabetes (T2DM) by extending the half-life of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Additionally, DPP4 inhibitors have demonstrated promising therapeutic effects in conditions such as atherosclerosis (AS), hypertension, heart failure, dyslipidemia, and neurodegenerative diseases. This review summarizes the mechanisms and clinical applications of DPP4 and its inhibitors in various diseases, highlighting their potential value in modern medicine.

References

[1]  Mulvihill, E.E. and Drucker, D.J. (2014) Pharmacology, Physiology, and Mechanisms of Action of Dipeptidyl Peptidase-4 Inhibitors. Endocrine Reviews, 35, 992-1019.
https://doi.org/10.1210/er.2014-1035
[2]  Zhang, T., Tong, X., Zhang, S., Wang, D., Wang, L., Wang, Q., et al. (2021) The Roles of Dipeptidyl Peptidase 4 (DPP4) and DPP4 Inhibitors in Different Lung Diseases: New Evidence. Frontiers in Pharmacology, 12, Article 731453.
https://doi.org/10.3389/fphar.2021.731453
[3]  Thornberry, N.A. and Gallwitz, B. (2009) Mechanism of Action of Inhibitors of Dipeptidyl-Peptidase-4 (DPP-4). Best Practice & Research Clinical Endocrinology & Metabolism, 23, 479-486.
https://doi.org/10.1016/j.beem.2009.03.004
[4]  Zhong, J., Rao, X. and Rajagopalan, S. (2013) An Emerging Role of Dipeptidyl Peptidase 4 (DPP4) Beyond Glucose Control: Potential Implications in Cardiovascular Disease. Atherosclerosis, 226, 305-314.
https://doi.org/10.1016/j.atherosclerosis.2012.09.012
[5]  Sebastián-Martín, A., Sánchez, B.G., Mora-Rodríguez, J.M., Bort, A. and Díaz-Laviada, I. (2022) Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines, 10, Article 2026.
https://doi.org/10.3390/biomedicines10082026
[6]  Gupta, S. and Sen, U. (2019) More than Just an Enzyme: Dipeptidyl Peptidase-4 (DPP-4) and Its Association with Diabetic Kidney Remodelling. Pharmacological Research, 147, Article ID: 104391.
https://doi.org/10.1016/j.phrs.2019.104391
[7]  Weber, A.E. (2004) Dipeptidyl Peptidase IV Inhibitors for the Treatment of Diabetes. Journal of Medicinal Chemistry, 47, 4135-4141.
https://doi.org/10.1021/jm030628v
[8]  Mest, H.J. and Mentlein, R. (2005) Dipeptidyl Peptidase Inhibitors as New Drugs for the Treatment of Type 2 Diabetes. Diabetologia, 48, 616-620.
https://doi.org/10.1007/s00125-005-1707-5
[9]  Yazbeck, R., Howarth, G.S. and Abbott, C.A. (2009) Dipeptidyl Peptidase Inhibitors, an Emerging Drug Class for Inflammatory Disease? Trends in Pharmacological Sciences, 30, 600-607.
https://doi.org/10.1016/j.tips.2009.08.003
[10]  Lyseng-Williamson, K.A. (2007) Sitagliptin. Drugs, 67, 587-597.
https://doi.org/10.2165/00003495-200767040-00007
[11]  Dhillon, S. and Weber, J. (2009) Saxagliptin. Drugs, 69, 2103-2114.
https://doi.org/10.2165/11201170-000000000-00000
[12]  Graefe-Mody, U., Retlich, S. and Friedrich, C. (2012) Clinical Pharmacokinetics and Pharmacodynamics of Linagliptin. Clinical Pharmacokinetics, 51, 411-427.
https://doi.org/10.2165/11630900-000000000-00000
[13]  Scott, L.J. (2017) Sitagliptin: A Review in Type 2 Diabetes. Drugs, 77, 209-224.
https://doi.org/10.1007/s40265-016-0686-9
[14]  Nicotera, R., Casarella, A., Longhitano, E., Bolignano, D., Andreucci, M., De Sarro, G., et al. (2020) Antiproteinuric Effect of DPP-IV Inhibitors in Diabetic and Non-Diabetic Kidney Diseases. Pharmacological Research, 159, Article ID: 105019.
https://doi.org/10.1016/j.phrs.2020.105019
[15]  Kim, S.C., Schneeweiss, S., Glynn, R.J., Doherty, M., Goldfine, A.B. and Solomon, D.H. (2014) Dipeptidyl Peptidase-4 Inhibitors in Type 2 Diabetes May Reduce the Risk of Autoimmune Diseases: A Population-Based Cohort Study. Annals of the Rheumatic Diseases, 74, 1968-1975.
https://doi.org/10.1136/annrheumdis-2014-205216
[16]  Liu, D., Jin, B., Chen, W. and Yun, P. (2019) Dipeptidyl Peptidase 4 (DPP-4) Inhibitors and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus (T2DM): A Systematic Review and Meta-Analysis. BMC Pharmacology and Toxicology, 20, Article No. 15.
https://doi.org/10.1186/s40360-019-0293-y
[17]  Leung, M., Leung, D.Y. and Wong, V.W. (2016) Effects of Dipeptidyl Peptidase-4 Inhibitors on Cardiac and Endothelial Function in Type 2 Diabetes Mellitus: A Pilot Study. Diabetes and Vascular Disease Research, 13, 236-243.
https://doi.org/10.1177/1479164116629352
[18]  Sarkar, J., Nargis, T., Tantia, O., Ghosh, S. and Chakrabarti, P. (2019) Increased Plasma Dipeptidyl Peptidase-4 (DPP4) Activity Is an Obesity-Independent Parameter for Glycemic Deregulation in Type 2 Diabetes Patients. Frontiers in Endocrinology, 10, Article 505.
https://doi.org/10.3389/fendo.2019.00505
[19]  Ayaori, M., Iwakami, N., Uto‐Kondo, H., Sato, H., Sasaki, M., Komatsu, T., et al. (2013) Dipeptidyl Peptidase‐4 Inhibitors Attenuate Endothelial Function as Evaluated by Flow‐mediated Vasodilatation in Type 2 Diabetic Patients. Journal of the American Heart Association, 2, e003277.
https://doi.org/10.1161/jaha.112.003277
[20]  Barnett, A. (2006) DPP-4 Inhibitors and Their Potential Role in the Management of Type 2 Diabetes. International Journal of Clinical Practice, 60, 1454-1470.
https://doi.org/10.1111/j.1742-1241.2006.01178.x
[21]  Gallwitz, B. (2019) Clinical Use of DPP-4 Inhibitors. Frontiers in Endocrinology, 10, Article 389.
https://doi.org/10.3389/fendo.2019.00389
[22]  Aschner, P., Kipnes, M.S., Lunceford, J.K., Sanchez, M., Mickel, C. and Williams-Herman, D.E. (2006) Effect of the Dipeptidyl Peptidase-4 Inhibitor Sitagliptin as Monotherapy on Glycemic Control in Patients with Type 2 Diabetes. Diabetes Care, 29, 2632-2637.
https://doi.org/10.2337/dc06-0703
[23]  Chan, J.C.N., Aschner, P., Owens, D.R., Picard, S., Vincent, M., Dain, M., et al. (2015) Triple Combination of Insulin Glargine, Sitagliptin and Metformin in Type 2 Diabetes: The EASIE Post-Hoc Analysis and Extension Trial. Journal of Diabetes and Its Complications, 29, 134-141.
https://doi.org/10.1016/j.jdiacomp.2014.08.007
[24]  Libby, P. (2021) The Changing Landscape of Atherosclerosis. Nature, 592, 524-533.
https://doi.org/10.1038/s41586-021-03392-8
[25]  Bj?rkegren, J.L.M. and Lusis, A.J. (2022) Atherosclerosis: Recent Developments. Cell, 185, 1630-1645.
https://doi.org/10.1016/j.cell.2022.04.004
[26]  Zeng, Y., Li, C., Guan, M., Zheng, Z., Li, J., Xu, W., et al. (2014) The DPP-4 Inhibitor Sitagliptin Attenuates the Progress of Atherosclerosis in Apolipoprotein-E-Knockout Mice via AMPK-and MAPK-Dependent Mechanisms. Cardiovascular Diabetology, 13, Article No. 32.
https://doi.org/10.1186/1475-2840-13-32
[27]  Ervinna, N., Mita, T., Yasunari, E., Azuma, K., Tanaka, R., Fujimura, S., et al. (2013) Anagliptin, a DPP-4 Inhibitor, Suppresses Proliferation of Vascular Smooth Muscles and Monocyte Inflammatory Reaction and Attenuates Atherosclerosis in Male Apo E-Deficient Mice. Endocrinology, 154, 1260-1270.
https://doi.org/10.1210/en.2012-1855
[28]  Meng, J., Zhang, W., Wang, C., Xiong, S., Wang, Q., Li, H., et al. (2020) The Dipeptidyl Peptidase (DPP)-4 Inhibitor Trelagliptin Inhibits Il-1β-Induced Endothelial Inflammation and Monocytes Attachment. International Immunopharmacology, 89, Article ID: 106996.
https://doi.org/10.1016/j.intimp.2020.106996
[29]  Lu, H.Y., Huang, C.Y., Shih, C.M., Chang, W.H., Tsai, C.S., Lin, F.Y., et al. (2015) Dipeptidyl Peptidase-4 Inhibitor Decreases Abdominal Aortic Aneurysm Formation through GLP-1-Dependent Monocytic Activity in Mice. PLOS ONE, 10, e0121077.
https://doi.org/10.1371/journal.pone.0121077
[30]  Vittone, F., Liberman, A., Vasic, D., Ostertag, R., Esser, M., Walcher, D., et al. (2012) Sitagliptin Reduces Plaque Macrophage Content and Stabilises Arteriosclerotic Lesions in Apoe?/? Mice. Diabetologia, 55, 2267-2275.
https://doi.org/10.1007/s00125-012-2582-5
[31]  Han, S.J., Ha, K.H., Lee, N. and Kim, D.J. (2020) Effectiveness and Safety of Sodium‐Glucose Co‐Transporter‐2 Inhibitors Compared with Dipeptidyl Peptidase‐4 Inhibitors in Older Adults with Type 2 Diabetes: A Nationwide Population‐Based Study. Diabetes, Obesity and Metabolism, 23, 682-691.
https://doi.org/10.1111/dom.14261
[32]  Chen, S., Kong, X., Zhang, K., Luo, S., Wang, F. and Zhang, J. (2022) DPP4 as a Potential Candidate in Cardiovascular Disease. Journal of Inflammation Research, 15, 5457-5469.
https://doi.org/10.2147/jir.s380285
[33]  Haidinger, M., Werzowa, J., Hecking, M., Antlanger, M., Stemer, G., Pleiner, J., et al. (2014) Efficacy and Safety of Vildagliptin in New-Onset Diabetes after Kidney Transplantation—A Randomized, Double-Blind, Placebo-Controlled Trial. American Journal of Transplantation, 14, 115-123.
https://doi.org/10.1111/ajt.12518
[34]  Mita, T., Katakami, N., Shiraiwa, T., Yoshii, H., Gosho, M., Ishii, H., et al. (2017) The Influence of Sitagliptin on Treatment-Related Quality of Life in Patients with Type 2 Diabetes Mellitus Receiving Insulin Treatment: A Prespecified Sub-Analysis. Diabetes Therapy, 8, 693-704.
https://doi.org/10.1007/s13300-017-0267-2
[35]  Mita, T., Katakami, N., Yoshii, H., Onuma, T., Kaneto, H., Osonoi, T., et al. (2015) Alogliptin, a Dipeptidyl Peptidase 4 Inhibitor, Prevents the Progression of Carotid Atherosclerosis in Patients with Type 2 Diabetes: The Study of Preventive Effects of Alogliptin on Diabetic Atherosclerosis (SPEAD-A). Diabetes Care, 39, 139-148.
https://doi.org/10.2337/dc15-0781
[36]  Mita, T., Katakami, N., Shiraiwa, T., Yoshii, H., Onuma, T., Kuribayashi, N., et al. (2016) Sitagliptin Attenuates the Progression of Carotid Intima-Media Thickening in Insulin-Treated Patients with Type 2 Diabetes: The Sitagliptin Preventive Study of Intima-Media Thickness Evaluation (Spike). Diabetes Care, 39, 455-464.
https://doi.org/10.2337/dc15-2145
[37]  de Boer, S.A., Heerspink, H.J.L., Juárez Orozco, L.E., van Roon, A.M., Kamphuisen, P.W., Smit, A.J., et al. (2017) Effect of Linagliptin on Pulse Wave Velocity in Early Type 2 Diabetes: A Randomized, Double‐Blind, Controlled 26‐Week Trial (Release). Diabetes, Obesity and Metabolism, 19, 1147-1154.
https://doi.org/10.1111/dom.12925
[38]  Lu, Z., Ma, G. and Chen, L. (2020) Sitagliptin on Carotid Intima-Media Thickness in Type 2 Diabetes Mellitus Patients and Anemia: A Subgroup Analysis of the PROLOGUE Study. Mediators of Inflammation, 2020, Article ID: 8143835.
https://doi.org/10.1155/2020/8143835
[39]  Staessen, J.A., Wang, J., Bianchi, G. and Birkenh?ger, W.H. (2003) Essential Hypertension. The Lancet, 361, 1629-1641.
https://doi.org/10.1016/s0140-6736(03)13302-8
[40]  Suzuki, Y., Kaneko, H., Okada, A., Komuro, J., Fujiu, K., Takeda, N., et al. (2024) Comparison of Incident Hypertension between SGLT2 Inhibitors vs. DPP4 Inhibitors. Hypertension Research, 47, 1789-1796.
https://doi.org/10.1038/s41440-024-01649-z
[41]  Nistala, R. and Savin, V. (2017) Diabetes, Hypertension, and Chronic Kidney Disease Progression: Role of DPP4. American Journal of Physiology-Renal Physiology, 312, F661-F670.
https://doi.org/10.1152/ajprenal.00316.2016
[42]  Sweadner, K.J. and Donnet, C. (2001) Structural Similarities of Na, K-ATpase and SERCA, the Ca2+-ATpase of the Sarcoplasmic Reticulum. Biochemical Journal, 356, 685-704.
https://doi.org/10.1042/bj3560685
[43]  Mason, R.P., Jacob, R.F., Kubant, R., Ciszewski, A., Corbalan, J.J. and Malinski, T. (2012) Dipeptidyl Peptidase-4 Inhibition with Saxagliptin Enhanced Nitric Oxide Release and Reduced Blood Pressure and Sicam-1 Levels in Hypertensive Rats. Journal of Cardiovascular Pharmacology, 60, 467-473.
https://doi.org/10.1097/fjc.0b013e31826be204
[44]  Vellecco, V., Mitidieri, E., Gargiulo, A., Brancaleone, V., Matassa, D., Klein, T., et al. (2016) Vascular Effects of Linagliptin in Non‐Obese Diabetic Mice Are Glucose‐Independent and Involve Positive Modulation of the Endothelial Nitric Oxide Synthase (eNOS)/Caveolin‐1 (CAV‐1) Pathway. Diabetes, Obesity and Metabolism, 18, 1236-1243.
https://doi.org/10.1111/dom.12750
[45]  Hussain, M., Atif, M.A. and Ghafoor, M.B. (2016) Beneficial Effects of Sitagliptin and Metformin in Non-Diabetic Hypertensive and Dyslipidemic Patients. Pakistan Journal of Pharmaceutical Sciences, 29, 2385-2389.
[46]  Yuasa, S., Sato, K., Furuki, T., Minamizawa, K., Sakai, H., Numata, Y., et al. (2017) Primary Care-Based Investigation of the Effect of Sitagliptin on Blood Pressure in Hypertensive Patients with Type 2 Diabetes. Journal of Clinical Medicine Research, 9, 188-192.
https://doi.org/10.14740/jocmr2820w
[47]  Harangi, M., Tóth, N. and Katona, é. (2023) A dipeptidil-peptidáz-4-gátlók szerepe a 2-es típusú diabetes mellitus kezelésében napjainkban. Diabetologia Hungarica, 31, 113-122.
https://doi.org/10.24121/dh.2023.6
[48]  Groenewegen, A., Rutten, F.H., Mosterd, A. and Hoes, A.W. (2020) Epidemiology of Heart Failure. European Journal of Heart Failure, 22, 1342-1356.
https://doi.org/10.1002/ejhf.1858
[49]  Xia, C., Goud, A., D’Souza, J., Dahagam, C., Rao, X., Rajagopalan, S., et al. (2017) DPP4 Inhibitors and Cardiovascular Outcomes: Safety on Heart Failure. Heart Failure Reviews, 22, 299-304.
https://doi.org/10.1007/s10741-017-9617-4
[50]  Lee, S.J., Lee, K.H., Oh, H.G., Seo, H.J., Jeong, S.J. and Kim, C.H. (2019) Effect of Sodium-Glucose Cotransporter-2 Inhibitors versus Dipeptidyl Peptidase 4 Inhibitors on Cardiovascular Function in Patients with Type 2 Diabetes Mellitus and Coronary Artery Disease. Journal of Obesity & Metabolic Syndrome, 28, 254-261.
https://doi.org/10.7570/jomes.2019.28.4.254
[51]  Matsubara, J., Sugiyama, S., Akiyama, E., Iwashita, S., Kurokawa, H., Ohba, K., et al. (2013) Dipeptidyl Peptidase-4 Inhibitor, Sitagliptin, Improves Endothelial Dysfunction in Association with Its Anti-Inflammatory Effects in Patients with Coronary Artery Disease and Uncontrolled Diabetes. Circulation Journal, 77, 1337-1344.
https://doi.org/10.1253/circj.cj-12-1168
[52]  Read, P.A., Khan, F.Z., Heck, P.M., Hoole, S.P. and Dutka, D.P. (2010) DPP-4 Inhibition by Sitagliptin Improves the Myocardial Response to Dobutamine Stress and Mitigates Stunning in a Pilot Study of Patients with Coronary Artery Disease. Circulation: Cardiovascular Imaging, 3, 195-201.
https://doi.org/10.1161/circimaging.109.899377
[53]  Chaykovska, L., von Websky, K., Rahnenführer, J., Alter, M., Heiden, S., Fuchs, H., et al. (2011) Effects of DPP-4 Inhibitors on the Heart in a Rat Model of Uremic Cardiomyopathy. PLOS ONE, 6, e27861.
https://doi.org/10.1371/journal.pone.0027861
[54]  Hong, S., Choo, E., Ihm, S., Chang, K. and Seung, K. (2017) Dipeptidyl Peptidase 4 Inhibitor Attenuates Obesity-Induced Myocardial Fibrosis by Inhibiting Transforming Growth Factor-βl and Smad2/3 Pathways in High-Fat Diet-Induced Obesity Rat Model. Metabolism, 76, 42-55.
https://doi.org/10.1016/j.metabol.2017.07.007
[55]  Kopin, L. and Lowenstein, C.J. (2017) Dyslipidemia. Annals of Internal Medicine, 167, ITC81.
https://doi.org/10.7326/aitc201712050
[56]  Berberich, A.J. and Hegele, R.A. (2021) A Modern Approach to Dyslipidemia. Endocrine Reviews, 43, 611-653.
https://doi.org/10.1210/endrev/bnab037
[57]  Fukuda-Tsuru, S., Anabuki, J., Abe, Y., Yoshida, K. and Ishii, S. (2012) A Novel, Potent, and Long-Lasting Dipeptidyl Peptidase-4 Inhibitor, Teneligliptin, Improves Postprandial Hyperglycemia and Dyslipidemia after Single and Repeated Administrations. European Journal of Pharmacology, 696, 194-202.
https://doi.org/10.1016/j.ejphar.2012.09.024
[58]  Cha, S., Park, Y., Yun, J., Lim, T., Song, K., Yoo, K., et al. (2017) A Comparison of Effects of DPP-4 Inhibitor and SGLT2 Inhibitor on Lipid Profile in Patients with Type 2 Diabetes. Lipids in Health and Disease, 16, Article No. 58.
https://doi.org/10.1186/s12944-017-0443-4
[59]  Love, K.M. and Liu, Z. (2021) DPP4 Activity, Hyperinsulinemia, and Atherosclerosis. The Journal of Clinical Endocrinology & Metabolism, 106, 1553-1565.
https://doi.org/10.1210/clinem/dgab078
[60]  Sato, Y., Koshioka, S., Kirino, Y., Kamimoto, T., Kawazoe, K., Abe, S., et al. (2011) Role of Dipeptidyl Peptidase IV (DPP4) in the Development of Dyslipidemia: DPP4 Contributes to the Steroid Metabolism Pathway. Life Sciences, 88, 43-49.
https://doi.org/10.1016/j.lfs.2010.10.019
[61]  Zhang, Q., Xiao, X., Zheng, J., Li, M., Yu, M., Ping, F., et al. (2021) Vildagliptin, a Dipeptidyl Peptidase-4 Inhibitor, Attenuated Endothelial Dysfunction through Mirnas in Diabetic Rats. Archives of Medical Science, 17, 1378-1387.
https://doi.org/10.5114/aoms.2019.86609
[62]  Noda, Y., Miyoshi, T., Oe, H., Ohno, Y., Nakamura, K., Toh, N., et al. (2013) Alogliptin Ameliorates Postprandial Lipemia and Postprandial Endothelial Dysfunction in Non-Diabetic Subjects: A Preliminary Report. Cardiovascular Diabetology, 12, Article No. 8.
https://doi.org/10.1186/1475-2840-12-8
[63]  Baumeier, C., Schlüter, L., Saussenthaler, S., Laeger, T., R?diger, M., Alaze, S.A., et al. (2017) Elevated Hepatic DPP4 Activity Promotes Insulin Resistance and Non-Alcoholic Fatty Liver Disease. Molecular Metabolism, 6, 1254-1263.
https://doi.org/10.1016/j.molmet.2017.07.016
[64]  Zhou, Y., Liang, F., Tian, H., Luo, D., Wang, Y. and Yang, S. (2023) Mechanisms of Gut Microbiota-Immune-Host Interaction on Glucose Regulation in Type 2 Diabetes. Frontiers in Microbiology, 14, Article 1121695.
https://doi.org/10.3389/fmicb.2023.1121695
[65]  Kuramitsu, S., Miyauchi, K., Yokoi, H., Suwa, S., Nishizaki, Y., Yokoyama, T., et al. (2017) Effect of Sitagliptin on Plaque Changes in Coronary Artery Following Acute Coronary Syndrome in Diabetic Patients: The ESPECIAL-ACS Study. Journal of Cardiology, 69, 369-376.
https://doi.org/10.1016/j.jjcc.2016.08.011
[66]  Alrouji, M., Al-kuraishy, H.M., Al-buhadily, A.K., Al-Gareeb, A.I., Elekhnawy, E. and Batiha, G.E. (2023) DPP-4 Inhibitors and Type 2 Diabetes Mellitus in Parkinson’s Disease: A Mutual Relationship. Pharmacological Reports, 75, 923-936.
https://doi.org/10.1007/s43440-023-00500-5
[67]  Angelopoulou, E. and Piperi, C. (2018) DPP-4 Inhibitors: A Promising Therapeutic Approach against Alzheimer’s Disease. Annals of Translational Medicine, 6, 255-255.
https://doi.org/10.21037/atm.2018.04.41
[68]  Sim, A.Y., Barua, S., Kim, J.Y., Lee, Y. and Lee, J.E. (2021) Role of DPP-4 and SGLT2 Inhibitors Connected to Alzheimer Disease in Type 2 Diabetes Mellitus. Frontiers in Neuroscience, 15, Article 708547.
https://doi.org/10.3389/fnins.2021.708547
[69]  Jeong, S.H., Chung, S.J., Yoo, H.S., Hong, N., Jung, J.H., Baik, K., et al. (2021) Beneficial Effects of Dipeptidyl Peptidase-4 Inhibitors in Diabetic Parkinson’s Disease. Brain, 144, 1127-1137.
https://doi.org/10.1093/brain/awab015
[70]  Kosaraju, J., Gali, C.C., Khatwal, R.B., Dubala, A., Chinni, S., Holsinger, R.M.D., et al. (2013) Saxagliptin: A Dipeptidyl Peptidase-4 Inhibitor Ameliorates Streptozotocin Induced Alzheimer’s Disease. Neuropharmacology, 72, 291-300.
https://doi.org/10.1016/j.neuropharm.2013.04.008
[71]  Shah, Z., Kampfrath, T., Deiuliis, J.A., Zhong, J., Pineda, C., Ying, Z., et al. (2011) Long-Term Dipeptidyl-Peptidase 4 Inhibition Reduces Atherosclerosis and Inflammation via Effects on Monocyte Recruitment and Chemotaxis. Circulation, 124, 2338-2349.
https://doi.org/10.1161/circulationaha.111.041418
[72]  Wiciński, M., Górski, K., Walczak, M., Wódkiewicz, E., S?upski, M., Pawlak-Osińska, K., et al. (2019) Neuroprotective Properties of Linagliptin: Focus on Biochemical Mechanisms in Cerebral Ischemia, Vascular Dysfunction and Certain Neurodegenerative Diseases. International Journal of Molecular Sciences, 20, Article 4052.
https://doi.org/10.3390/ijms20164052
[73]  Chiazza, F., Tammen, H., Pintana, H., Lietzau, G., Collino, M., Nystr?m, T., et al. (2018) The Effect of DPP-4 Inhibition to Improve Functional Outcome after Stroke Is Mediated by the SDF-1α/CXCR4 Pathway. Cardiovascular Diabetology, 17, Article No. 60.
https://doi.org/10.1186/s12933-018-0702-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133