全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青年人中的成年发病型糖尿病9型诊疗研究进展
Research Progress on the Diagnosis and Treatment of Maturity Onset Diabetes of the Young 9

DOI: 10.12677/acm.2024.1472158, PP. 1386-1396

Keywords: 青年人中的成年发病型糖尿病,青年人中的成年发病型糖尿病9型,成对盒4基因
MODY
, MODY9, PAX4

Full-Text   Cite this paper   Add to My Lib

Abstract:

青年人中的成年发病型糖尿病(maturity onset diabetes of the young, MODY)是一组罕见的单基因糖尿病,具有发病年龄小、常染色体显性遗传模式的糖尿病家族史和胰岛素非依赖性等典型特征。基因检测对于MODY亚型的诊断至关重要。MODY9是由PAX4基因突变引起的MODY亚型。PAX4基因编码成对盒4蛋白(Paired box 4, PAX4),在胰腺发育过程中对胰岛β细胞的分化和在胰腺成熟后对胰岛β细胞的存活和增殖至关重要。PAX4突变导致胰岛β细胞功能障碍。目前已发现PAX4多个突变位点,这些突变可导致不同的临床表型。除了典型的MODY临床表现外,MODY9还表现出酮症或酮症酸中毒倾向。MODY9可以通过饮食控制、口服降糖药或胰岛素进行治疗。本综述对MODY9在病因、临床表现、诊断、治疗等方面的研究进展进行总结。同时对PAX4与糖尿病相关的变异位点汇总,探讨PAX4基因突变与糖尿病的关系。
Maturity onset diabetes of the young (MODY) is a rare group of monogenic diabetes mellitus with typical features such as young age of onset, family history of diabetes in an autosomal dominant pattern of inheritance, and insulin non-dependence. Genetic testing is essential for the diagnosis of MODY subtypes. MODY9 is a MODY subtype caused by mutations in the PAX4 gene. PAX4 gene encodes the paired box 4 protein (PAX4), which is essential for islet β-cell differentiation during pancreatic development and for survival and proliferation after maturation. Mutations in PAX4 cause β-cell dysfunction. Multiple mutation sites in PAX4 have been identified, and these mutations can lead to different clinical phenotypes. In addition to the typical clinical manifestations of MODY, MODY9 exhibits a tendency toward ketosis or ketoacidosis. MODY9 can be treated by dietary control, oral hypoglycemic agents or insulin. This review summarizes the research progress of MODY9 in terms of etiology, clinical manifestations, diagnosis, and treatment. It also summarizes the mutation loci of PAX4 associated with diabetes and discusses the relationship between PAX4 gene mutation and diabetes.

References

[1]  Hattersley, A.T., Greeley, S.A.W., Polak, M., Rubio-Cabezas, O., Nj?lstad, P.R., Mlynarski, W., et al. (2018) ISPAD Clinical Practice Consensus Guidelines 2018: The Diagnosis and Management of Monogenic Diabetes in Children and Adolescents. Pediatric Diabetes, 19, 47-63.
https://doi.org/10.1111/pedi.12772
[2]  Zhang, H., Colclough, K., Gloyn, A.L. and Pollin, T.I. (2021) Monogenic Diabetes: A Gateway to Precision Medicine in Diabetes. Journal of Clinical Investigation, 131, e142244.
https://doi.org/10.1172/jci142244
[3]  Shields, B.M., Hicks, S., Shepherd, M.H., Colclough, K., Hattersley, A.T. and Ellard, S. (2010) Maturity-Onset Diabetes of the Young (MODY): How Many Cases Are We Missing? Diabetologia, 53, 2504-2508.
https://doi.org/10.1007/s00125-010-1799-4
[4]  Schober, E., Rami, B., Grabert, M., Thon, A., Kapellen, T., Reinehr, T., et al. (2009) Phenotypical Aspects of Maturity‐Onset Diabetes of the Young (MODY Diabetes) in Comparison with Type 2 Diabetes Mellitus (T2DM) in Children and Adolescents: Experience from a Large Multicentre Database. Diabetic Medicine, 26, 466-473.
https://doi.org/10.1111/j.1464-5491.2009.02720.x
[5]  Oliveira, S.C., Neves, J.S., Pérez, A. and Carvalho, D. (2020) Maturity-Onset Diabetes of the Young: From a Molecular Basis Perspective toward the Clinical Phenotype and Proper Management. Endocrinología, Diabetes y Nutrición, 67, 137-147.
https://doi.org/10.1016/j.endinu.2019.07.012
[6]  Shimajiri, Y., Sanke, T., Furuta, H., Hanabusa, T., Nakagawa, T., Fujitani, Y., et al. (2001) A Missense Mutation of PAX4 Gene (R121W) Is Associated with Type 2 Diabetes in Japanese. Diabetes, 50, 2864-2869.
https://doi.org/10.2337/diabetes.50.12.2864
[7]  Inoue, H., Nomiyama, J., Nakai, K., Matsutani, A., Tanizawa, Y. and Oka, Y. (1998) Isolation of Full-Length cDNA of Mouse PAX4 Gene and Identification of Its Human Homologue. Biochemical and Biophysical Research Communications, 243, 628-633.
https://doi.org/10.1006/bbrc.1998.8144
[8]  Smith, S.B., Ee, H.C., Conners, J.R. and German, M.S. (1999) Paired-Homeodomain Transcription Factor PAX4 Acts as a Transcriptional Repressor in Early Pancreatic Development. Molecular and Cellular Biology, 19, 8272-8280.
https://doi.org/10.1128/mcb.19.12.8272
[9]  Chi, N. and Epstein, J.A. (2002) Getting Your PAX Straight: PAX Proteins in Development and Disease. Trends in Genetics, 18, 41-47.
https://doi.org/10.1016/s0168-9525(01)02594-x
[10]  Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. and Gruss, P. (1997) The Pax4 Gene Is Essential for Differentiation of Insulin-Producing β Cells in the Mammalian Pancreas. Nature, 386, 399-402.
https://doi.org/10.1038/386399a0
[11]  Collombat, P., Mansouri, A., Hecksher-S?rensen, J., Serup, P., Krull, J., Gradwohl, G., et al. (2003) Opposing Actions of ARX and PAX4 in Endocrine Pancreas Development. Genes & Development, 17, 2591-2603.
https://doi.org/10.1101/gad.269003
[12]  Collombat, P., Hecksher-S?rensen, J., Broccoli, V., Krull, J., Ponte, I., Mundiger, T., et al. (2005) The Simultaneous Loss of ARX and PAX4 Genes Promotes a Somatostatin-Producing Cell Fate Specification at the Expense of the α-and β-Cell Lineages in the Mouse Endocrine Pancreas. Development, 132, 2969-2980.
https://doi.org/10.1242/dev.01870
[13]  Lorenzo, P.I., Fuente-Martín, E., Brun, T., Cobo-Vuilleumier, N., Jimenez-Moreno, C.M., G. Herrera Gomez, I., et al. (2015) PAX4 Defines an Expandable β-Cell Subpopulation in the Adult Pancreatic Islet. Scientific Reports, 5, Article No. 15672.
https://doi.org/10.1038/srep15672
[14]  Mauvais-Jarvis, F., Smith, S.B., May, C.L., Leal, S.M., Gautier, J., Molokhia, M., et al. (2004) PAX4 Gene Variations Predispose to Ketosis-Prone Diabetes. Human Molecular Genetics, 13, 3151-3159.
https://doi.org/10.1093/hmg/ddh341
[15]  Cheon, C.K., Lee, Y.J., Yoo, S., Lee, J.H., Lee, J.E., Kim, H.J., et al. (2020) Delineation of the Genetic and Clinical Spectrum, Including Candidate Genes, of Monogenic Diabetes: A Multicenter Study in South Korea. Journal of Pediatric Endocrinology and Metabolism, 33, 1539-1550.
https://doi.org/10.1515/jpem-2020-0336
[16]  Plengvidhya, N., Kooptiwut, S., Songtawee, N., Doi, A., Furuta, H., Nishi, M., et al. (2007) PAX4 Mutations in Thais with Maturity Onset Diabetes of the Young. The Journal of Clinical Endocrinology & Metabolism, 92, 2821-2826.
https://doi.org/10.1210/jc.2006-1927
[17]  Sujjitjoon, J., Kooptiwut, S., Chongjaroen, N., Semprasert, N., Hanchang, W., Chanprasert, K., et al. (2016) PAX4 R192H and P321H Polymorphisms in Type 2 Diabetes and Their Functional Defects. Journal of Human Genetics, 61, 943-949.
https://doi.org/10.1038/jhg.2016.80
[18]  Biason-Lauber, A., Boehm, B., Lang-Muritano, M., Gauthier, B.R., Brun, T., Wollheim, C.B., et al. (2005) Association of Childhood Type 1 Diabetes Mellitus with a Variant of PAX4: Possible Link to Beta Cell Regenerative Capacity. Diabetologia, 48, 900-905.
https://doi.org/10.1007/s00125-005-1723-5
[19]  (2018) Professional Practice Committee, American College of Cardiology-Designated Representatives, and American Diabetes Association Staff Disclosures. Diabetes Care, 41, S154-S155.
[20]  Geng, D., Liu, S., Steck, A., Eisenbarth, G., Rewers, M. and She, J. (2005) Comment On: Biason-Lauber A, Boehm B, Lang-Muritano M, et al. (2005) Association of Childhood Type 1 Diabetes Mellitus with a Variant of PAX4: Possible Link to Beta Cell Regenerative Capacity. Diabetologia 48: 900-905. Diabetologia, 49, 215-216.
https://doi.org/10.1007/s00125-005-0064-8
[21]  Martin, R.J.L., Savage, D.A., Carson, D.J., Maxwell, A.P. and Patterson, C.C. (2006) The PAX4 Gene Variant A1168C Is Not Associated with Early Onset Type 1 Diabetes in a UK Population. Diabetic Medicine, 23, 927-928.
https://doi.org/10.1111/j.1464-5491.2006.01869.x
[22]  Zhang, Y., Xiao, X., Liu, Y., Zhu, X., Wenhui, L., Li, N., et al. (2008) The Association of the PAX4 Gene with Type 1 Diabetes in Han Chinese. Diabetes Research and Clinical Practice, 81, 365-369.
https://doi.org/10.1016/j.diabres.2008.05.009
[23]  Hermann, R., Mantere, J., Lipponen, K., Veijola, R., Soltesz, G., Otonkoski, T., et al. (2005) Lack of Association of PAX4 Gene with Type 1 Diabetes in the Finnish and Hungarian Populations. Diabetes, 54, 2816-2819.
https://doi.org/10.2337/diabetes.54.9.2816
[24]  Zhou, G., Tao, M., Wang, Q., Chen, X., Liu, J. and Zhang, L. (2023) Maturity-Onset Diabetes of the Young Type 9 or Latent Autoimmune Diabetes in Adults: A Case Report and Review of Literature. World Journal of Diabetes, 14, 1137-1145.
https://doi.org/10.4239/wjd.v14.i7.1137
[25]  Cheung, C.Y.Y., Tang, C.S., Xu, A., Lee, C., Au, K., Xu, L., et al. (2016) Exome-Chip Association Analysis Reveals an Asian-Specific Missense Variant in PAX4 Associated with Type 2 Diabetes in Chinese Individuals. Diabetologia, 60, 107-115.
https://doi.org/10.1007/s00125-016-4132-z
[26]  Boike, S., Mir, M., Rauf, I., Jama, A.B., Sunesara, S., Mushtaq, H., et al. (2022) Ketosis-Prone Diabetes Mellitus: A Phenotype That Hospitalists Need to Understand. World Journal of Clinical Cases, 10, 10867-10872.
https://doi.org/10.12998/wjcc.v10.i30.10867
[27]  Wang, Y., Zhang, J., Zhao, Y., Wang, S., Zhang, J., Han, Q., et al. (2018) COL4A3 Gene Variants and Diabetic Kidney Disease in MODY. Clinical Journal of the American Society of Nephrology, 13, 1162-1171.
https://doi.org/10.2215/cjn.09100817
[28]  WHO Expert Consultation (2004) Appropriate Body-Mass Index for Asian Populations and Its Implications for Policy and Intervention Strategies. The Lancet, 363, 157-163.
[29]  Kodama, S., Horikawa, C., Fujihara, K., Yoshizawa, S., Yachi, Y., Tanaka, S., et al. (2013) Quantitative Relationship between Body Weight Gain in Adulthood and Incident Type 2 Diabetes: A Meta-Analysis. Obesity Reviews, 15, 202-214.
https://doi.org/10.1111/obr.12129
[30]  Shankar, R.K., Pihoker, C., Dolan, L.M., Standiford, D., Badaru, A., Dabelea, D., et al. (2012) Permanent Neonatal Diabetes Mellitus: Prevalence and Genetic Diagnosis in the SEARCH for Diabetes in Youth Study. Pediatric Diabetes, 14, 174-180.
https://doi.org/10.1111/pedi.12003
[31]  ?im?ek, E., ?ilingir, O., ?im?ek, T., Kocagil, S., Erzurumluo?lu G?kalp, E., Demiral, M., et al. (2024) Screening of Mutations in Maturity-Onset Diabetes of the Young-Related Genes and RFX6 in Children with Autoantibody-Negative Type 1 Diabetes Mellitus. Journal of Clinical Research in Pediatric Endocrinology, 16, 137-145.
https://doi.org/10.4274/jcrpe.galenos.2023.2023-5-10
[32]  Dong, S. and Wu, H. (2017) Regenerating Β Cells of the Pancreas—Potential Developments in Diabetes Treatment. Expert Opinion on Biological Therapy, 18, 175-185.
https://doi.org/10.1080/14712598.2018.1402885
[33]  Lorenzo, P.I., Cobo-Vuilleumier, N. and Gauthier, B.R. (2018) Therapeutic Potential of Pancreatic PAX4-Regulated Pathways in Treating Diabetes Mellitus. Current Opinion in Pharmacology, 43, 1-10.
https://doi.org/10.1016/j.coph.2018.07.004
[34]  Blyszczuk, P., Czyz, J., Kania, G., Wagner, M., Roll, U., St-Onge, L., et al. (2003) Expression of PAX4 in Embryonic Stem Cells Promotes Differentiation of Nestin-Positive Progenitor and Insulin-Producing Cells. Proceedings of the National Academy of Sciences, 100, 998-1003.
https://doi.org/10.1073/pnas.0237371100
[35]  Parajuli, K.R., Zhang, Y., Cao, A.M., Wang, H., Fonseca, V.A. and Wu, H. (2020) Pax4 Gene Delivery Improves Islet Transplantation Efficacy by Promoting Β Cell Survival and α-to-β Cell Transdifferentiation. Cell Transplantation, 29.
https://doi.org/10.1177/0963689720958655
[36]  Wang, D., Yuan, J., Yang, F., Qiu, H., Lu, J. and Yang, J. (2022) Early-Onset Diabetes Involving Three Consecutive Generations Had Different Clinical Features from Age-Matched Type 2 Diabetes without a Family History in China. Endocrine, 78, 47-56.
https://doi.org/10.1007/s12020-022-03144-2
[37]  Johnson, S.R., Ellis, J.J., Leo, P.J., Anderson, L.K., Ganti, U., Harris, J.E., et al. (2018) Comprehensive Genetic Screening: The Prevalence of Maturity-Onset Diabetes of the Young Gene Variants in a Population-Based Childhood Diabetes Cohort. Pediatric Diabetes, 20, 57-64.
https://doi.org/10.1111/pedi.12766
[38]  Zubkova, N., Burumkulova, F., Plechanova, M., Petrukhin, V., Petrov, V., Vasilyev, E., et al. (2019) High Frequency of Pathogenic and Rare Sequence Variants in Diabetes-Related Genes among Russian Patients with Diabetes in Pregnancy. Acta Diabetologica, 56, 413-420.
https://doi.org/10.1007/s00592-018-01282-6
[39]  Zhu, M.-Q., et al. (2019) Maturity Onset Diabetes of the Young (MODY) in Chinese Children: Genes and Clinical Phenotypes. Journal of Pediatric Endocrinology and Metabolism, 32, 759-765.
https://doi.org/10.1515/jpem-2018-0446
[40]  Chapla, A., Mruthyunjaya, M.D., Asha, H.S., Varghese, D., Varshney, M., Vasan, S.K., et al. (2014) Maturity Onset Diabetes of the Young in India—A Distinctive Mutation Pattern Identified through Targeted Next-Generation Sequencing. Clinical Endocrinology, 82, 533-542.
https://doi.org/10.1111/cen.12541
[41]  Liang, H., Zhang, Y., Li, M., Yan, J., Yang, D., Luo, S., et al. (2020) Recognition of Maturity‐Onset Diabetes of the Young in China. Journal of Diabetes Investigation, 12, 501-509.
https://doi.org/10.1111/jdi.13378
[42]  Ding, Y., Li, N., Lou, D., Zhang, Q., Chang, G., Li, J., et al. (2020) Clinical and Genetic Analysis in a Chinese Cohort of Children and Adolescents with Diabetes/Persistent Hyperglycemia. Journal of Diabetes Investigation, 12, 48-62.
https://doi.org/10.1111/jdi.13322
[43]  Yu, M.G., Keenan, H.A., Shah, H.S., Frodsham, S.G., Pober, D., He, Z., et al. (2019) Residual Β Cell Function and Monogenic Variants in Long-Duration Type 1 Diabetes Patients. Journal of Clinical Investigation, 129, 3252-3263.
https://doi.org/10.1172/jci127397
[44]  Zhang, D., Chen, C., Yang, W., Piao, Y., Ren, L. and Sang, Y. (2022) C.487C>T Mutation in PAX4 Gene Causes MODY9: A Case Report and Literature Review. Medicine, 101, e32461.
https://doi.org/10.1097/md.0000000000032461
[45]  Demirci, D.K., Darendeliler, F., Poyrazoglu, S., Al, A.D.K., Gul, N., Tutuncu, Y., et al. (2021) Monogenic Childhood Diabetes: Dissecting Clinical Heterogeneity by Next-Generation Sequencing in Maturity-Onset Diabetes of the Young. OMICS: A Journal of Integrative Biology, 25, 431-449.
https://doi.org/10.1089/omi.2021.0081
[46]  Lee, D., Kwak, S., Park, H.S., Ku, E.J., Jeon, H.J. and Oh, T.K. (2021) Identification of Candidate Gene Variants of Monogenic Diabetes Using Targeted Panel Sequencing in Early Onset Diabetes Patients. BMJ Open Diabetes Research & Care, 9, e002217.
https://doi.org/10.1136/bmjdrc-2021-002217
[47]  Glotov, O., Serebryakova, E., Turkunova, M., Efimova, O., Glotov, A., Barbitoff, Y., et al. (2019) Whole-Exome Sequencing in Russian Children with Non-Type 1 Diabetes Mellitus Reveals a Wide Spectrum of Genetic Variants in Mody-Related and Unrelated Genes. Molecular Medicine Reports, 20, 4905-4914.
https://doi.org/10.3892/mmr.2019.10751
[48]  Pezzilli, S., Ludovico, O., Biagini, T., Mercuri, L., Alberico, F., Lauricella, E., et al. (2017) Insights from Molecular Characterization of Adult Patients of Families with Multigenerational Diabetes. Diabetes, 67, 137-145.
https://doi.org/10.2337/db17-0867
[49]  Jo, W., Endo, M., Ishizu, K., Nakamura, A. and Tajima, T. (2011) A Novel PAX4 Mutation in a Japanese Patient with Maturity-Onset Diabetes of the Young. The Tohoku Journal of Experimental Medicine, 223, 113-118.
https://doi.org/10.1620/tjem.223.113

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133