全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ni/Co水滑石活化过一硫酸盐高效降解四环素
Ni/Co Hydrotalcite Activated Peroxymonosulfate for Efficient Degradation of Tetracycline

DOI: 10.12677/hjcet.2024.144034, PP. 318-325

Keywords: 水滑石,过一硫酸盐,四环素,水处理
Hydrotalcite
, Peroxymonosulfate, Tetracycline, Water Treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用了水热共沉淀法合成了Ni/Co水滑石,并将其用于活化过一硫酸盐(PMS)高效降解四环素(TC)。通过进行不同的反应体系、氧化剂用量、催化剂用量、PH值、共存阴离子、循环实验和自由基猝灭等实验来评估催化剂的催化能力。结果表明:在PMS添加量1.5 mmol/L、催化剂添加量为0.2 g/L、pH为7时,催化效果最好可达到97.1%。共存阴离子CO32?、SO42?、Cl和H2PO4对催化剂的催化效果影响不大,经过5次循环实验,TC的降解率仍能保持在80%以上。自由基猝灭实验表明,在反应过程中自由基途径和非自由基途径均存在,两种途径中起作用从大到小依次为1O2 >SO4??>O2??> ·OH。
This article synthesized Ni/Co hydrotalcite using hydrothermal co precipitation method and used it to activate peroxymonosulfate (PMS) for efficient degradation of tetracycline (TC). The catalytic ability of the catalyst was evaluated by conducting different reaction systems, oxidant dosage, catalyst dosage, pH, coexisting anions, cycling experiments, and free radical quenching experiments. The results indicate that when the PMS addition is 1.5 mmol/L, the catalyst addition is 0.2 g/L, and the pH is 7, the best catalytic effect can reach 97.1%. The coexisting anions?CO32?、SO42?、Cl和H2PO4??have little effect on the catalytic performance of the catalyst. After 5 cycles of experiments, the degradation rate of TC can still be maintained above 80%. The free radical quenching experiment shows that both the free radical pathway and the non-free radical pathway exist during the reaction process, and the two pathways play a role in descending order from large to small: 1O2 >SO4??>O2??> ·OH.

References

[1]  Yang, Y., Gong, F., Liu, X., Li, Y., Chen, Q. and Pan, S. (2024) Construction of NiP/Ni(OH)2/Ag-ZIF Photocatalyst with 2-Methylimidazole Framework for Rapid Removal of Tetracycline. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 683, Article ID: 132997.
https://doi.org/10.1016/j.colsurfa.2023.132997
[2]  He, N., Yu, Z., Yang, G., Tan, Q., Wang, J. and Chen, Y. (2024) Designing with A-Site Cation Defects in LaFeO3: Removal of Tetracycline Hydrochloride in Complex Environments Using Photo-Fenton Synergy. Chemical Engineering Journal, 484, Article ID: 149613.
https://doi.org/10.1016/j.cej.2024.149613
[3]  Yang, J., Du, Y., Li, W., Shan, S., Hu, T. and Su, H. (2024) Iron Oxide/alginate Hydrogel Composites for Removal of Tetracycline via Adsorption-Coupled Fenton-Like Reaction. Materials Chemistry and Physics, 315, Article ID: 129034.
https://doi.org/10.1016/j.matchemphys.2024.129034
[4]  Feng, S., Xie, T., Wang, J., Yang, J., Kong, D., Liu, C., et al. (2023) Photocatalytic Activation of PMS over Magnetic Heterojunction Photocatalyst SrTiO3/BaFe12O19 for Tetracycline Ultrafast Degradation. Chemical Engineering Journal, 470, Article ID: 143900.
https://doi.org/10.1016/j.cej.2023.143900
[5]  An, B., Liu, J., Zhu, B., Liu, F., Jiang, G., Duan, X., et al. (2023) Returnable Mos2@carbon Nitride Nanotube Composite Hollow Spheres Drive Photo-Self-Fenton-Pms System for Synergistic Catalytic and Photocatalytic Tetracycline Degradation. Chemical Engineering Journal, 478, Article ID: 147344.
https://doi.org/10.1016/j.cej.2023.147344
[6]  Zhang, D., He, Q., Hu, X., Zhang, K., Chen, C. and Xue, Y. (2021) Enhanced Adsorption for the Removal of Tetracycline Hydrochloride (TC) Using Ball-Milled Biochar Derived from Crayfish Shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, Article ID: 126254.
https://doi.org/10.1016/j.colsurfa.2021.126254
[7]  Li, Y., Fu, M., Wang, R., Wu, S. and Tan, X. (2022) Efficient Removal TC by Zn@SnO2/PI via the Synergy of Adsorption and Photocatalysis under Visible Light. Chemical Engineering Journal, 444, Article ID: 136567.
https://doi.org/10.1016/j.cej.2022.136567
[8]  Xu, H., Deng, Y., Li, M., Zhang, K., Zou, J., Yang, Y., et al. (2023) Removal of Tetracycline in Nitrification Membrane Bioreactors with Different Ammonia Loading Rates: Performance, Metabolic Pathway, and Key Contributors. Environmental Pollution, 332, Article ID: 121922.
https://doi.org/10.1016/j.envpol.2023.121922
[9]  Zhang, C., Ni, J., Ding, N. and Liu, H. (2023) Visible-Light-Assisted PMS Activation by Heterojunction Photocatalyst MgIn2S4/Bi2O3 for Tetracycline Degradation. Catalysis Communications, 183, Article ID: 106773.
https://doi.org/10.1016/j.catcom.2023.106773
[10]  Dhiman, P., Kumar, A., Rana, G. and Sharma, G. (2023) Cobalt-Zinc Nanoferrite for Synergistic Photocatalytic and Peroxymonosulfate-Assisted Degradation of Sulfosalicylic Acid. Journal of Materials Science, 58, 9938-9966.
https://doi.org/10.1007/s10853-023-08669-z
[11]  Le, V., Nguyen, T., Doong, R., Chen, C., Tran, C. and Dong, C. (2023) Peroxymonosulfate Activation over NiCo2O4/MnOOH for Enhancing Ciprofloxacin Degradation in Water. Environmental Technology & Innovation, 30, Article ID: 103117.
https://doi.org/10.1016/j.eti.2023.103117
[12]  You, Y., Xu, G., Yang, X., Liu, Y., Ma, X. and Ji, Y. (2024) Cu-Fe-Ni Layered Hydroxides/Magnetic Biochar Composite as Peroxymonosulfate Activator for Removal of Enrofloxacin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 683, Article ID: 133082.
https://doi.org/10.1016/j.colsurfa.2023.133082
[13]  Gao, S., Pan, J., Zhang, Y., Zhao, Z. and Cui, J. (2024) Mn-NSC Co-Doped Modified Biochar/permonosulfate System for Degradation of Ciprofloxacin in Wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 680, Article ID: 132640.
https://doi.org/10.1016/j.colsurfa.2023.132640
[14]  Tan, Y., Li, C., Sun, Z., Bian, R., Dong, X., Zhang, X., et al. (2020) Natural Diatomite Mediated Spherically Monodispersed CoFe2O4 Nanoparticles for Efficient Catalytic Oxidation of Bisphenol a through Activating Peroxymonosulfate. Chemical Engineering Journal, 388, Article ID: 124386.
https://doi.org/10.1016/j.cej.2020.124386
[15]  Li, J., Li, S., Cao, Z., Zhao, Y., Wang, Q. and Cheng, H. (2023) Heterostructure CoFe2O4/Kaolinite Composite for Efficient Degradation of Tetracycline Hydrochloride through Synergetic Photo-Fenton Reaction. Applied Clay Science, 244, Article ID: 107102.
https://doi.org/10.1016/j.clay.2023.107102
[16]  Gong, C., Chen, F., Yang, Q., Luo, K., Yao, F., Wang, S., et al. (2017) Heterogeneous Activation of Peroxymonosulfate by Fe-Co Layered Doubled Hydroxide for Efficient Catalytic Degradation of Rhoadmine B. Chemical Engineering Journal, 321, 222-232.
https://doi.org/10.1016/j.cej.2017.03.117
[17]  Bai, J., Zhang, X., Wang, C., Li, X., Xu, Z., Jing, C., et al. (2024) The Adsorption-Photocatalytic Synergism of LDHs-Based Nanocomposites on the Removal of Pollutants in Aqueous Environment: A Critical Review. Journal of Cleaner Production, 436, Article ID: 140705.
https://doi.org/10.1016/j.jclepro.2024.140705
[18]  Deng, J., Xiao, L., Yuan, S., Wang, W., Zhan, X. and Hu, Z. (2021) Activation of Peroxymonosulfate by Cofeni Layered Double Hydroxide/Graphene Oxide (LDH/GO) for the Degradation of Gatifloxacin. Separation and Purification Technology, 255, Article ID: 117685.
https://doi.org/10.1016/j.seppur.2020.117685
[19]  Zhang, S., Zhang, L., Liu, L., Wang, X., Pan, J., Pan, X., et al. (2022) NiCo-LDH@MnO2 Nanocages as Advanced Catalysts for Efficient Formaldehyde Elimination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 650, Article ID: 129619.
https://doi.org/10.1016/j.colsurfa.2022.129619

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133