|
Finance 2024
基于改进BVAR模型对通货膨胀率的预测分析
|
Abstract:
针对向量自回归模型(VAR)的高维估计问题,本文结合贝叶斯理论提出了一种融合正态–逆Wishart共轭先验分布的估计方法。该方法引入了Metropolis-Hastings (MH)算法,从数据集中确定先验分布的超参数,并通过设定与模型规模相关的系数进行估计。与传统VAR模型相比,基于贝叶斯理论的估计方法在保留相关样本信息的同时,能够有效控制过度拟合,表现出较好的稳健性和有效性。最后,本文以湖南省为例,利用所提模型对通货膨胀率进行了分析与预测,并提出了可行的建议。
Aiming at the problem of high-dimensional estimation of vector autoregressive model (VAR), this paper proposes an estimation method combining normal-inverse Wishart conjugate prior distribution with Bayesian theory. In this method, Metropolis-Hastings (MH) algorithm is introduced to determine the hyperparameters of prior distribution from the data set, and estimate them by setting the coefficients related to the model size. Compared with the traditional VAR model, the estimation method based on Bayesian theory can effectively control over-fitting while retaining the relevant sample information, showing better robustness and effectiveness. Finally, taking Hunan Province as an example, this paper analyzes and forecasts the inflation rate by using the proposed model, and puts forward feasible suggestions.
[1] | Miranda, S. and Rey, H. (2015) World Asset Markets and the Global Financial Cycle. NBER Working Papers, 21, 122-138. |
[2] | Giannone, D., Lenza, M. and Primiceri, G.E. (2015) Prior Selection for Vector Autoregressions. Review of Economics and Statistics, 97, 436-451. https://doi.org/10.1162/REST_a_00483 |
[3] | Carriero, A., Clark, T.E. and Marcellino, M. (2015) Bayesian VARs: Specification Choices and Forecast Accuracy. Journal of Applied Econometrics, 30, 46-73. https://doi.org/10.1002/jae.2315 |
[4] | Banbua, M., Giannone, D. and Reichlin, L. (2010) Large Bayesian Vector Auto Regressions. Journal of Applied Econometrics, 25, 71-92. https://doi.org/10.1002/jae.1137 |
[5] | 邵明振, 陈磊, 宋雯彦. 我国月度居民消费价格指数的预测方法与应用[J]. 统计与决策, 2012(14): 30-31. |
[6] | 薛晔, 蔺琦珠, 任耀. 我国通货膨胀风险的预测模型——基于决策树-BP神经网络[J]. 经济问题, 2016(1): 82-89. |
[7] | 肖争艳, 刘玲君, 赵廷蓉, 等. 深度学习神经网络能改进GDP的预测能力吗? [J]. 经济与管理研究, 2020, 41(7): 3-17. |
[8] | 唐晓彬, 董曼茹, 张瑞. 基于机器学习LSTM & US模型的消费者信心指数预测研究[J]. 统计研究, 2020, 37(7): 104-115. |
[9] | 杨青, 王晨蔚. 基于深度学习LSTM神经网络的全球股票指数预测研究[J]. 统计研究, 2019, 36(3): 65-77. |
[10] | 王兵兵. 山东省第三产业与城市化关系的实证研究[J]. 重庆理工大学学报(社会科学版), 2013, 27(9): 121-125+134. |
[11] | 王星. 基于改进BVAR模型和MS-VECM模型的能源消费分析[J]. 重庆工商大学学报(自然科学版), 2023, 40(6): 111-118. |