|
“双碳”目标下第四代核能系统发展概述
|
Abstract:
以核能为重要内容的新能源作为实现“双碳”目标的主要途径,在“3060”目标的背景下,再次迎来了历史性发展机遇期。当前,能源清洁低碳转型的紧迫性、高质量发展的必要性、价格的不断上涨以及核能经济效益、安全水平的不断提高,正在改变公众对核能的看法,为核能带来了新的发展机遇。第四代核能系统具有安全性高、经济性好、用途广泛等特点,符合市场和未来发展的要求,符合发展新质生产力的内在要求。除发电外,第四代核能系统还可用于制氢、海水淡化、区域供热和提供工艺热等,能够满足许多行业的能源需求,有助于更大规模地减少碳排放。文章综合介绍了第四代核能系统的发展情况,展望了相关技术的发展前景。
As the main way to achieve the “dual carbon goals”, new energy with nuclear energy as an important content has once again ushered in a historic period of opportunity for development in the context of the “3060” goal. At present, the urgency of clean and low-carbon energy transformation, the necessity of high-quality development, the continuous rise in prices, and the continuous improvement of the economic benefits and safety level of nuclear energy are changing the public’s perception of nuclear energy, which brings new development opportunities for the nuclear energy. The generation IV nuclear energy system has the characteristics of high safety, good economy and wide range of uses, which meets the requirements of the market and future development, and meets the inherent requirements of developing new quality productivity. In addition to power generation, generation IV nuclear energy system can be used for hydrogen production, desalination, district heating and process heat supply, among others, to meet the energy needs of many industries and help reduce carbon emissions on a larger scale. The article synthesizes the development of the generation IV nuclear energy system and looks ahead to the development of related technologies.
[1] | 陈小砖, 李硕, 任晓利, 等. 中国核能利用现状及未来展望[J]. 能源与节能, 2018(8): 52-55. |
[2] | 叶奇蓁, 苏罡, 黄文, 等. 中国核能现代化发展战略[J]. 科技导报, 2022, 40(24): 20-30. |
[3] | 王茜, 王峥, 李言瑞. 全球核电发展新趋势[J]. 能源, 2024(5): 36-39. |
[4] | 王鑫, 吴继承, 朴磊. “双碳”目标下核能发展形势思考[J]. 核科学与工程, 2022, 42(2): 241-245. |
[5] | 李莹, 孙玉兵. 我国核电发展现状、问题和建议[J]. 当代化工研究, 2021(22): 175-177. |
[6] | 李远山, 靖剑平, 毕金生, 等. 第四代反应堆安全分析程序研究现状及发展[C]//中国核学会. 中国核科学技术进展报告(第四卷)——中国核学会2015年学术年会论文集第10册(核安全分卷). 北京: 环境保护部核与辐射安全中心, 2015: 6. |
[7] | Vaidyanathan, G. (2024) Decay Heat Removal in Sodium Cooled Fast Reactors—An Overview. Annals of Nuclear Energy, 205, Article ID: 110554. https://doi.org/10.1016/j.anucene.2024.110554 |
[8] | 伍赛特. 高温气冷堆技术研究及展望[J]. 节能, 2023, 42(10): 89-93. |
[9] | 仇若萌, 郭慧芳, 马荣芳, 等. 美国先进反应堆技术发展概述[C]//中国核学会. 中国核科学技术进展报告(第七卷)——中国核学会2021年学术年会论文集第8册(核情报分卷). 北京: 中国核科技信息与经济研究院, 2021: 5. |
[10] | 臧金光, 黄彦平. 超临界水冷堆研发进展[J]. 核动力工程, 2021, 42(6): 1-4. |
[11] | 黄彦平, 臧金光. 气冷快堆概述[J]. 现代物理知识, 2018, 30(4): 40-43. |
[12] | Su’ud, Z. and Sekimoto, H. (2013) The Prospect of Gas Cooled Fast Reactors for Long Life Reactors with Natural Uranium as Fuel Cycle Input. Annals of Nuclear Energy, 54, 58-66. https://doi.org/10.1016/j.anucene.2012.09.014 |
[13] | 韩金盛, 刘滨, 李文强. 铅冷快堆研究概述[J]. 核科学与技术, 2018, 6(3): 87-97. https://doi.org/10.12677/nst.2018.63011 |
[14] | Al-Dawood, K. and Palmtag, S. (2023) Fuel Cycle Cost Comparison between Lead and Sodium Cooled Fast Reactors. Nuclear Engineering and Design, 414, Article ID: 112583. https://doi.org/10.1016/j.nucengdes.2023.112583 |
[15] | Jin, X., Zhang, Z., Sun, Y., Liu, M., Xiao, Y., Guo, H., et al. (2023) Preliminary Safety Comparison of Lead-Cooled Fast Reactors with Advanced Fuels in Unprotected Transients. Nuclear Engineering and Design, 411, Article ID: 112419. https://doi.org/10.1016/j.nucengdes.2023.112419 |
[16] | Hou, Y., Chen, P., Jin, Y., Zhang, C., Li, W., Gao, C., et al. (2024) Performance Analysis of a Small Lead-Cooled Fast Reactor Coupled with a Copper-Chloride Cycle Hydrogen Production System. International Journal of Hydrogen Energy, 49, 1538-1549. https://doi.org/10.1016/j.ijhydene.2023.10.276 |
[17] | Xu, Y., Li, X., Huang, X., Zhang, X., Hu, C., Zeng, X., et al. (2024) Numerical Investigation of the Migration and Retention of Corrosion Particles in a Lead-Cooled Fast Reactor. Nuclear Engineering and Design, 423, Article ID: 113209. https://doi.org/10.1016/j.nucengdes.2024.113209 |
[18] | 徐洪杰, 戴志敏, 蔡翔舟, 等. 钍基熔盐堆和核能综合利用[J]. 现代物理知识, 2018, 30(4): 25-34. |
[19] | 徐銤, 杨红义. 钠冷快堆及其安全特性[J]. 物理, 2016, 45(9): 561-568. |
[20] | Kamide, H., Asayama, T., Wakai, T., Ezure, T., Uchibori, A., Kubo, S., et al. (2024) Progress of Sodium-Cooled Fast Reactor Developments in Japan Taking into Account Total Lifecycle, Risk-Informed Approach, and Sustainability. Nuclear Engineering and Design, 421, Article ID: 113062. https://doi.org/10.1016/j.nucengdes.2024.113062 |
[21] | Hamamoto, S., Shimizu, A., Inoi, H., Tochio, D., Homma, F., Sawahata, H., et al. (2022) Improving the Safety of the High Temperature Gas-Cooled Reactor ‘HTTR’ Based on Japan’s New Regulatory Requirements. Nuclear Engineering and Design, 388, Article ID: 111642. https://doi.org/10.1016/j.nucengdes.2021.111642 |
[22] | 罗琦, 黄彦平, 李永亮, 等. 超临界水冷堆技术研发概况及其关键问题[J]. 南华大学学报(自然科学版), 2011, 25(4): 1-8. |
[23] | Cottrell, W.B. (1952) Reactor Program of the Aircraft Nuclear Propulsion Program. ORNL-1234. |
[24] | Ignatiev, V., Feynberg, O., Gnidoi, I., et al. (2007) Progress in Development of Li, Be, Na/F Molten Salt Actinide Recycler & Transmuter Concept. Proceedings of International Congress on Advances in Nuclear Power Plants 2007, Nice, 13-18 May 2007, 2-4. |
[25] | Furukawa, K., Arakawa, K., Erbay, L.B., Ito, Y., Kato, Y., Kiyavitskaya, H., et al. (2008) A Road Map for the Realization of Global-Scale Thorium Breeding Fuel Cycle by Single Molten-Fluoride Flow. Energy Conversion and Management, 49, 1832-1848. https://doi.org/10.1016/j.enconman.2007.09.027 |
[26] | Talala, R. (2022) Challenges and Development in Molten Salt Reactors and Their Future Applications and Outlook. Ph.D. Thesis, Lahti University of Technology LUT. |