全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

武大AiFlow无人机视觉测流系统在洪水应急监测中的应用实践
Practical Application of Wuhan University AiFlow UAV Visual Flow Measurement System in Flood Emergency Monitoring

DOI: 10.12677/jwrr.2024.133027, PP. 232-239

Keywords: 视觉测流系统,无人机,灵活机动,低空巡航,应急监测
Visual Flow Measurement System
, UAV, Flexible Maneuverability, Low-Altitude Cruising, Emergency Monitoring

Full-Text   Cite this paper   Add to My Lib

Abstract:

水文监测传统的测流设备往往因地形限制只能进行定点测量,难以满足应急监测需求。本文采用无人机搭载视觉测流仪的方式设计和研制了武大AiFlow无人机视觉测流系统,将先进的视频图像处理技术和改进的STIV算法相结合,实现了在洪水期间流速流量的精准测量。以贵州麦穰水文站、重庆江津五岔水文站以及广西桂平大藤峡为户外实验场地,测试结果表明,与ADCP等常规设备相比,武大AiFlow无人机视觉测流系统在水文监测上的准确度高达90%以上。另外,武大AiFlow无人机视觉测流系统凭借灵活机动、低空巡航的自主飞行方式在数据采集和视频影像传输中展现出了独特优势,不仅能够有效解决洪水期间应急监测的难题,降低高洪期间人工监测的安全风险,还在很大程度上提高了工作效率与测量精度。
Hydrological monitoring of traditional flow measurement equipments are difficult to meet the needs of emergency monitoring, due to terrain and its fixed-point measurement limitations. In this paper, a Wuhan University AirFlow unmanned aerial vehicle (UAV) visual flow measurement system was designed by using a UAV equipped with a visual flow meter, which combined advanced video image processing technology and improved space-time image velocimetry (STIV) algorithm to achieve the accurate measurement of flow velocity and flow rate. Using Mairang, Wucha, and Datengxia stations as outdoor experimental sites, the test results show that the Wuhan University AiFlow UAV visual flow measurement system has an accuracy of more than 90% by compared with the conventional equipment such as acoustic doppler current profiler (ADCP) in hydrological monitoring. In addition, the Wuhan University AiFlow UAV visual flow measurement system shows unique advantages in data collection and video image transmission due to the flexible maneuverability and low-altitude cruising autonomous flight mode, which not only effectively solves the problem of emergency monitoring during floods and reduces the safety risk of manual monitoring during high-flooding periods, but also greatly improves the work efficiency and measurement accuracy.

References

[1]  郭道冉, 孙静, 高尚嵘, 等. 水文水资源管理对防洪减灾的意义[J]. 清洗世界, 2021(6): 75-76.
[2]  王俊, 刘东生, 陈松生, 等. 河流流量测验误差的理论与实践[M]. 武汉: 长江出版社, 2017.
[3]  CARREL, M., DETERT, M., PE?A-HARO, S., et al. Evaluation of the DischargeApp: A smartphone application for discharge measurements. HydroSenSoft, International Symposium and Exhibition on Hydro-Environment Sensors and Software, 2019, 8, 41-49.
[4]  赵浩源, 陈华, 刘维高, 等. 基于河流表面时空图像识别的测流方法[J]. 水资源研究, 2020, 9(1): 1-11.
https://doi.org/10.12677/jwrr.2020.91001
[5]  王铁胜. 计算机视觉技术的发展及应用[J]. 信息系统工程, 2022(4): 63-66.
[6]  赵立, 荆亚昊, 廖勇. 人工智能技术在水利行业中的应用综述[J]. 长江信息通信, 2023, 36(6): 9-12.
[7]  ZHAO, S. L., HUANG, W. X., YANG, M. X., et al. Real rainy scene analysis: A dual-module benchmark for image deraining and segmentation. 2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Brisbane, 10-14 July 2023, 69-74.
https://doi.org/10.1109/ICMEW59549.2023.00018
[8]  刘炳义, 李玉琳, 嵇莹, 等. 一种无人机山洪流量测量方法、装置及设备[P]. 中国专利, 202210782991.8. 2022-10-25.
[9]  王剑平, 朱芮, 张果, 等. 帧差与快速密集光流结合的图像法测流研究[J]. 工程科学与技术, 2022, 54(4): 195-207.
[10]  刘炳义, 陆超, 杜伟, 等. 一种用于无人机视频测流的示踪粒子抛洒装置[P]. 中国专利, 202221073299.X. 2022-11-15.
[11]  GB 50179-2015. 河流流量测验规范[S]. 北京: 中国计划出版社, 2016.
[12]  SL/T 247-2020. 水文资料整编规范[S]. 北京: 中国水利水电出版社, 2021.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133