|
干细胞外泌体在帕金森综合症中的研究进展
|
Abstract:
帕金森综合症(Parkinson’s disease, PD)是一种常见的神经退行性疾病,发病机制复杂,至今尚未治愈方法。间充质干细胞(mesenchymal stem cells, MSCs)通过表达外泌体(Exosomes, Exos)发挥免疫调节清除炎症、诱导神经元分化、促血管生成和抑制肿瘤且具有驱动生物过程潜力;间充质干细胞来源的外泌体(mesenchymal stem cell-derived exosomes, MSC-Exos)加载特异RNA、蛋白质和小分子药物通过细胞通讯作用靶向受体细胞介导病理改变;经过修饰的Exos穿过血脑屏障(BBB)靶向神经元改善PD成为治疗候选者受到广泛关注。本文主要介绍PD病理特症、MSC-Exos的生物学特性及细胞通讯作用治疗PD,为攻克PD带来新曙光。目前,MSC-Exos对小胶质细胞表型转换促中枢神经系统起调节和保护作用机制仍缺乏深入而全面的总结,此外,我们结合研究阐述MSC-Exos增强PD功能策略。
Parkinson’s disease (PD) is a common neurodegenerative disease with complex pathogenesis, and there is no cure so far. Mesenchymal stem cells (MSCs) play an immunomodulatory role in clearing inflammation, inducing neuronal differentiation, promoting angiogenesis and inhibiting tumors by expressing exosomes (Exos), and have the potential to drive biological processes. Mesenchymal stem cell-derived exosomes (MSC-Exos) loaded with specific RNA, protein and small molecule drugs target receptor cells to mediate pathological changes through cell communication. The modification of Exos across the blood-brain barrier (BBB) targeting neurons to improve PD has become a therapeutic candidate and has received widespread attention. This article mainly introduces the pathological characteristics of PD, the biological characteristics of MSC-Exos and the role of cell communication in the treatment of PD, which brings new dawn to overcome PD. At present, there is still a lack of in-depth and comprehensive summary of the mechanism of MSC-Exos in regulating and protecting the central nervous system by microglial phenotype transformation. In addition, we combined the research to explain the strategy of MSC-Exos to enhance PD function.
[1] | Armstrong, M.J. and Okun, M.S. (2020) Diagnosis and Treatment of Parkinson Disease. JAMA, 323, 548-560. https://doi.org/10.1001/jama.2019.22360 |
[2] | 沈凡艺, 陈子方, 吴海妹, 等. 帕金森病发病机制研究进展 [J]. 中国民族民间医药, 2020, 29(22): 60-64. |
[3] | Reeve, A.K., Ludtmann, M.H., Angelova, P.R., Simcox, E.M., Horrocks, M.H., Klenerman, D., et al. (2015) Aggregated Α-Synuclein and Complex I Deficiency: Exploration of Their Relationship in Differentiated Neurons. Cell Death & Disease, 6, e1820-e1820. https://doi.org/10.1038/cddis.2015.166 |
[4] | Bachhuber, T., Katzmarski, N., McCarter, J.F., Loreth, D., Tahirovic, S., Kamp, F., et al. (2015) Inhibition of Amyloid-β Plaque Formation by α-synuclein. Nature Medicine, 21, 802-807. https://doi.org/10.1038/nm.3885 |
[5] | Marras, C., Beck, J.C., Bower, J.H., Roberts, E., Ritz, B., Ross, G.W., et al. (2018) Prevalence of Parkinson’s Disease across North America. NPJ Parkinson’s Disease, 4, Article No. 21. https://doi.org/10.1038/s41531-018-0058-0 |
[6] | Li, M., Zeringer, E., Barta, T., Schageman, J., Cheng, A. and Vlassov, A.V. (2014) Analysis of the RNA Content of the Exosomes Derived from Blood Serum and Urine and Its Potential as Biomarkers. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, Article ID: 20130502. https://doi.org/10.1098/rstb.2013.0502 |
[7] | Scheiblich, H., Dansokho, C., Mercan, D., Schmidt, S.V., Bousset, L., Wischhof, L., et al. (2021) Microglia Jointly Degrade Fibrillar α-Synuclein Cargo by Distribution through Tunneling Nanotubes. Cell, 184, 5089-5106.E21. https://doi.org/10.1016/j.cell.2021.09.007 |
[8] | 雷童. 牙源干细胞对帕金森病动物模型的作用及机制研究[D]: [博士学位论文]. 北京: 北京科技大学, 2023. |
[9] | Ferguson, L.W., Rajput, A.H. and Rajput, A. (2015) Early-Onset vs. Late-Onset Parkinson’s Disease: A Clinical-Pathological Study. Canadian Journal of Neurological Sciences, 43, 113-119. https://doi.org/10.1017/cjn.2015.244 |
[10] | Tysnes, O. and Storstein, A. (2017) Epidemiology of Parkinson’s Disease. Journal of Neural Transmission, 124, 901-905. https://doi.org/10.1007/s00702-017-1686-y |
[11] | Parmar, M., Grealish, S. and Henchcliffe, C. (2020) The Future of Stem Cell Therapies for Parkinson Disease. Nature Reviews Neuroscience, 21, 103-115. https://doi.org/10.1038/s41583-019-0257-7 |
[12] | 杨盼, 毛凌毓, 刘长青, 等. 帕金森病发病机制及治疗研究进展[J]. 齐齐哈尔医学院学报, 2023, 44(5): 474-479. |
[13] | Kalia, L.V. and Lang, A.E. (2015) Parkinson’s Disease. The Lancet, 386, 896-912. https://doi.org/10.1016/s0140-6736(14)61393-3 |
[14] | Mor, D.E., Ugras, S.E., Daniels, M.J. and Ischiropoulos, H. (2016) Dynamic Structural Flexibility of α-Synuclein. Neurobiology of Disease, 88, 66-74. https://doi.org/10.1016/j.nbd.2015.12.018 |
[15] | 周宛仪, 刘逸奇, 王坚. 帕金森病中α突触核蛋白的“肠-脑轴”传播[J]. 中国临床神经科学, 2024, 32(z1): 42-48. |
[16] | Ma, J., Gao, J., Wang, J. and Xie, A. (2019) Prion-Like Mechanisms in Parkinson’s Disease. Frontiers in Neuroscience, 13, Article 552. https://doi.org/10.3389/fnins.2019.00552 |
[17] | Ding, Y., Xin, C., Zhang, C., Lim, K., Zhang, H., Fu, Z., et al. (2018) Natural Molecules from Chinese Herbs Protecting against Parkinson’s Disease via Anti-Oxidative Stress. Frontiers in Aging Neuroscience, 10, Article 246. https://doi.org/10.3389/fnagi.2018.00246 |
[18] | Bai, J.F., Zheng, S., Jiang, D.D., et al. (2015) Oxidative Stress Contributes to Abnormal Glucose Metabolism and Insulin Sensitivity in Two Hyperlipidemia Models. International Journal of Clinical and Experimental Pathology, 8, 13193-13200. |
[19] | 肖琪, 樊慧杰, 李艳荣, 等. 帕金森病发病机制研究进展[J]. 解放军医学杂志, 2023, 48(8): 983-992. |
[20] | Segura-Aguilar, J. and Huenchuguala, S. (2018) Aminochrome Induces Irreversible Mitochondrial Dysfunction by Inducing Autophagy Dysfunction in Parkinson’s Disease. Frontiers in Neuroscience, 12, Article 106. https://doi.org/10.3389/fnins.2018.00106 |
[21] | 柴原, 盖聪, 强天遥, 等. 大补阴丸、牵正散及合方对帕金森小鼠脑神经元及其线粒体复合物酶活性的保护作用[J]. 中华中医药杂志, 2019, 34(4): 1707-1711. |
[22] | Lutters, B., Foley, P. and Koehler, P.J. (2018) The Centennial Lesson of Encephalitis Lethargica. Neurology, 90, 563-567. https://doi.org/10.1212/wnl.0000000000005176 |
[23] | Pajares, M., I. Rojo, A., Manda, G., Boscá, L. and Cuadrado, A. (2020) Inflammation in Parkinson’s Disease: Mechanisms and Therapeutic Implications. Cells, 9, Article 1687. https://doi.org/10.3390/cells9071687 |
[24] | de Almeida, E.J.R., Ibrahim, H.J., Chitolina Schetinger, M.R., de Andrade, C.M. and Cardoso, A.M. (2022) Modulation of Inflammatory Mediators and Microglial Activation through Physical Exercise in Alzheimer’s and Parkinson’s Diseases. Neurochemical Research, 47, 3221-3240. https://doi.org/10.1007/s11064-022-03713-x |
[25] | 柴青. 针刺法联合益生菌对帕金森病患者肠道菌群失调的影响[J]. 医学理论与实践, 2022, 35(12): 2030-2032. |
[26] | Qian, Y., Yang, X., Xu, S., Wu, C., Song, Y., Qin, N., et al. (2018) Alteration of the Fecal Microbiota in Chinese Patients with Parkinson’s Disease. Brain, Behavior, and Immunity, 70, 194-202. https://doi.org/10.1016/j.bbi.2018.02.016 |
[27] | Sheikh, A. and Sheikh, K. (2020) The Expression Change of Glial Fibrillary Acidic Protein and Tyrosine Hydroxylase in Substantia Nigra of the Wistar Rats Exposed to Chlorpyrifos: A Novel Environmental Risk Factor for Parkinson’s Disease. Experimental Brain Research, 238, 2041-2051. https://doi.org/10.1007/s00221-020-05868-x |
[28] | Grayson, M. (2016) Parkinson’s Disease. Nature, 538, S1. https://doi.org/10.1038/538s1a |
[29] | 陈波, 刘智明, 杜谢琴, 等. 人诱导多能干细胞用于亨廷顿病大鼠模型的移植治疗[J]. 中国老年学杂志, 2017, 37(19): 4758-4760. |
[30] | Limousin, P. and Foltynie, T. (2019) Long-term Outcomes of Deep Brain Stimulation in Parkinson Disease. Nature Reviews Neurology, 15, 234-242. https://doi.org/10.1038/s41582-019-0145-9 |
[31] | 陈燕, 李辉, 沈杰. 司来吉兰联合左旋多巴治疗帕金森病患者的效果[J]. 中国民康医学, 2023, 35(11): 31-33. |
[32] | Ridler, C. (2017) Deep Brain Stimulation—Making the Right Connections. Nature Reviews Neurology, 13, 451-451. https://doi.org/10.1038/nrneurol.2017.91 |
[33] | 卢长虹. 帕金森病应用多巴胺受体激动剂联合美多芭治疗的效果[J]. 中国医药指南, 2022, 20(11): 88-90. |
[34] | 蔡皓然, 叶国生, 徐丽萍, 等. 细胞替代治疗帕金森病研究进展[J]. 中国老年学杂志, 2023, 43(9): 2278-2283. |
[35] | 胥昕怡, 占美, 张臣宇, 等. 左旋多巴联合司来吉兰或普拉克索治疗帕金森病的药物剂量多中心研究[J]. 中国医院药学杂志, 2023, 43(12): 1366-1371. |
[36] | 陈鹏. 帕金森病非运动症状, 试试针灸治疗[J]. 保健医苑, 2023(7): 26-28. |
[37] | Jin, S.J., Min, O.S., Chan, K.O., et al. (2017) Cografting Astrocytes Improves Cell Therapeutic Outcomes in a Parkinson’s Disease Model. Journal of Clinical Investigation, 128, 463-482. |
[38] | 李甜甜, 冯美江. 外泌体与帕金森病的研究进展[J]. 实用老年医学, 2023, 37(4): 339-342. |
[39] | Zhang, Y., Liu, Y., Liu, H. and Tang, W.H. (2019) Exosomes: Biogenesis, Biologic Function and Clinical Potential. Cell & Bioscience, 9, Article No. 19. https://doi.org/10.1186/s13578-019-0282-2 |
[40] | Cocucci, E. and Meldolesi, J. (2015) Ectosomes and Exosomes: Shedding the Confusion between Extracellular Vesicles. Trends in Cell Biology, 25, 364-372. https://doi.org/10.1016/j.tcb.2015.01.004 |
[41] | Raghu, K. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, Article eaau6977. |
[42] | Yu, H., Sun, T., An, J., Wen, L., Liu, F., Bu, Z., et al. (2020) Potential Roles of Exosomes in Parkinson’s Disease: From Pathogenesis, Diagnosis, and Treatment to Prognosis. Frontiers in Cell and Developmental Biology, 8, Article 86. https://doi.org/10.3389/fcell.2020.00086 |
[43] | 袁佳佳, 李红燕. 外泌体在帕金森病中的研究进展[J]. 中国临床神经科学, 2021, 29(6): 701-704, 717. |
[44] | Sarko, D.K. and McKinney, C.E. (2017) Exosomes: Origins and Therapeutic Potential for Neurodegenerative Disease. Frontiers in Neuroscience, 11, Article 82. https://doi.org/10.3389/fnins.2017.00082 |
[45] | Sato, T., Iso, Y., Uyama, T., Kawachi, K., Wakabayashi, K., Omori, Y., et al. (2011) Coronary Vein Infusion of Multipotent Stromal Cells from Bone Marrow Preserves Cardiac Function in Swine Ischemic Cardiomyopathy via Enhanced Neovascularization. Laboratory Investigation, 91, 553-564. https://doi.org/10.1038/labinvest.2010.202 |
[46] | Yeo, R.W.Y., Lai, R.C., Zhang, B., Tan, S.S., Yin, Y., Teh, B.J., et al. (2013) Mesenchymal Stem Cell: An Efficient Mass Producer of Exosomes for Drug Delivery. Advanced Drug Delivery Reviews, 65, 336-341. https://doi.org/10.1016/j.addr.2012.07.001 |
[47] | 薛春玲. 人间充质干细胞在结肠癌和帕金森疾病中的作用及其相关机制研究[D]: [博士学位论文]. 北京: 北京协和医学院, 2022. |
[48] | Janockova, J., Slovinska, L., Harvanova, D., Spakova, T. and Rosocha, J. (2021) New Therapeutic Approaches of Mesenchymal Stem Cells-Derived Exosomes. Journal of Biomedical Science, 28, Article No. 39. https://doi.org/10.1186/s12929-021-00736-4 |
[49] | 马艺菡, 王思乐, 段逵. 间充质干细胞外泌体治疗神经退行性疾病的研究进展[J]. 昆明理工大学学报(自然科学版), 2021, 46(4): 94-102. |
[50] | 杨明霞, 李沛鸿, 梁拴军. Burke倾斜量表评价Pusher综合征康复的研究 [J]. 中国康复理论与实践, 2012, 18(6): 569-571. |
[51] | Hall, J., Prabhakar, S., Balaj, L., Lai, C.P., Cerione, R.A. and Breakefield, X.O. (2016) Delivery of Therapeutic Proteins via Extracellular Vesicles: Review and Potential Treatments for Parkinson’s Disease, Glioma, and Schwannoma. Cellular and Molecular Neurobiology, 36, 417-427. https://doi.org/10.1007/s10571-015-0309-0 |
[52] | Claudia, A. and Maurizio, F. (2017) The Multifaceted Functions of Exosomes in Health and Disease: An Overview. Advances in Experimental Medicine and Biology, 998, 3-19. |
[53] | 王艺莹, 李瑞青, 李婧雯, 等. 外泌体介导细胞通讯:帕金森病的潜在生物标志物分析[J]. 中国组织工程研究, 2023, 27(24): 3883-3891. |
[54] | EL Andaloussi, S., M?ger, I., Breakefield, X.O. and Wood, M.J.A. (2013) Extracellular Vesicles: Biology and Emerging Therapeutic Opportunities. Nature Reviews Drug Discovery, 12, 347-357. https://doi.org/10.1038/nrd3978 |
[55] | Izco, M., Blesa, J., Schleef, M., Schmeer, M., Porcari, R., Al-Shawi, R., et al. (2019) Systemic Exosomal Delivery of Shrna Minicircles Prevents Parkinsonian Pathology. Molecular Therapy, 27, 2111-2122. https://doi.org/10.1016/j.ymthe.2019.08.010 |
[56] | Anasiz, Y., Ozgul, R.K. and Uckan-Cetinkaya, D. (2017) A New Chapter for Mesenchymal Stem Cells: Decellularized Extracellular Matrices. Stem Cell Reviews and Reports, 13, 587-597. https://doi.org/10.1007/s12015-017-9757-x |
[57] | Jarmalavi?iūt?, A., Tunaitis, V., Pivorait?, U., Venalis, A. and Pivoriūnas, A. (2015) Exosomes from Dental Pulp Stem Cells Rescue Human Dopaminergic Neurons from 6-Hydroxy-Dopamine-Induced Apoptosis. Cytotherapy, 17, 932-939. https://doi.org/10.1016/j.jcyt.2014.07.013 |
[58] | Phinney, D.G. and Pittenger, M.F. (2017) Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells, 35, 851-858. https://doi.org/10.1002/stem.2575 |
[59] | 高振橙, 刘欣. 间充质干细胞外泌体在神经系统疾病修复过程中的作用与应用[J]. 中国组织工程研究, 2020, 24(19): 3048-3054. |
[60] | Peng, H., Li, Y., Ji, W., Zhao, R., Lu, Z., Shen, J., et al. (2022) Intranasal Administration of Self-Oriented Nanocarriers Based on Therapeutic Exosomes for Synergistic Treatment of Parkinson’s Disease. ACS Nano, 16, 869-884. https://doi.org/10.1021/acsnano.1c08473 |
[61] | Teixeira, F.G., Vila?a-Faria, H., Domingues, A.V., Campos, J. and Salgado, A.J. (2020) Preclinical Comparison of Stem Cells Secretome and Levodopa Application in a 6-Hydroxydopamine Rat Model of Parkinson’s Disease. Cells, 9, Article 315. https://doi.org/10.3390/cells9020315 |
[62] | Manek, R., Moghieb, A., Yang, Z., Kumar, D., Kobeissy, F., Sarkis, G.A., et al. (2018) Correction To: Protein Biomarkers and Neuroproteomics Characterization of Microvesicles/Exosomes from Human Cerebrospinal Fluid Following Traumatic Brain Injury. Molecular Neurobiology, 55, 6129-6129. https://doi.org/10.1007/s12035-018-0909-z |
[63] | Manna, I., Quattrone, A., De Benedittis, S., Vescio, B., Iaccino, E. and Quattrone, A. (2021) Exosomal Mirna as Peripheral Biomarkers in Parkinson’s Disease and Progressive Supranuclear Palsy: A Pilot Study. Parkinsonism & Related Disorders, 93, 77-84. https://doi.org/10.1016/j.parkreldis.2021.11.020 |
[64] | Luo, H., Zhang, J. and Miao, F. (2016) Effects of Pramipexole Treatment on the α-Synuclein Content in Serum Exosomes of Parkinson’s Disease Patients. Experimental and Therapeutic Medicine, 12, 1373-1376. https://doi.org/10.3892/etm.2016.3471 |
[65] | 范丽珊, 樊慧杰, 李艳荣, 等. 外泌体在帕金森病发病中的作用研究进展[J]. 解放军医学杂志, 2023, 48(10): 1214-1220. |
[66] | Haney, M.J., Klyachko, N.L., Zhao, Y., Gupta, R., Plotnikova, E.G., He, Z., et al. (2015) Exosomes as Drug Delivery Vehicles for Parkinson’s Disease Therapy. Journal of Controlled Release, 207, 18-30. https://doi.org/10.1016/j.jconrel.2015.03.033 |
[67] | Vila?a-Faria, H., Salgado, A.J. and Teixeira, F.G. (2019) Mesenchymal Stem Cells-Derived Exosomes: A New Possible Therapeutic Strategy for Parkinson’s Disease? Cells, 8, Article 118. https://doi.org/10.3390/cells8020118 |
[68] | Mohamed, A.S., Abdel-Fattah, D.S., Abdel-Aleem, G.A., El-Sheikh, T.F. and Elbatch, M.M. (2023) Biochemical Study of the Effect of Mesenchymal Stem Cells-Derived Exosome Versus L-Dopa in Experimentally Induced Parkinson’s Disease in Rats. Molecular and Cellular Biochemistry, 478, 2795-2811. |