全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于单细胞RNA测序数据对胰腺癌肿瘤微环境中缺氧肿瘤亚群的探究
Exploration of Hypoxia-Related Tumor Subpopulations in the Tumor Microenvironment of Pancreatic Cancer Based on Single-Cell RNA-Sequencing Data

DOI: 10.12677/hjbm.2024.143043, PP. 388-399

Keywords: 胰腺癌,单细胞RNA测序,肿瘤微环境,缺氧,预后
Pancreatic Cancer
, Single-Cell RNA-Sequencing, Tumor Microenvironment, Hypoxia, Prognosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

胰腺癌作为恶性程度极高的肿瘤之一,多数患者确诊时已处于不可切除或转移性阶段。随着单细胞RNA测序(single-cell RNA-sequencing, scRNA-seq)技术的发展,我们能够以更高分辨率深入探索肿瘤微环境(tumor microenvironment, TME)的内部异质性,从而揭示胰腺癌进展中预后不良的关键机制。先前研究指出,缺氧是实体瘤TME的固有特性,能激活血管生成与转移相关的信号通路,但缺氧TME的异质性仍需进一步阐释。通过基因集富集分析、拟时序分析和细胞间通讯分析等手段,对胰腺癌scRNA-seq数据进行分析,识别出具有不同生物学功能的肿瘤亚群,特别是与缺氧密切相关的亚群。该缺氧肿瘤亚群与不良预后紧密相关,据此构建的风险评分模型可有效预测胰腺癌患者总生存期。本研究加深了对胰腺癌TME的了解,为胰腺癌预后的预测提供了一定参考。
Pancreatic cancer is one of the most malignant tumors and most patients have unrespectable or metastatic disease at the time of diagnosis. With the development of single-cell RNA-sequencing (scRNA-seq) technology, we are able to explore the internal heterogeneity of the tumor microenvironment (TME) at a higher resolution, thereby revealing the key mechanisms underlying the poor prognosis of pancreatic cancer progression. Previous studies have shown that hypoxia is an intrinsic property of the TME in solid tumors and activates signaling pathways involved in angiogenesis and metastasis, but the heterogeneity of the hypoxic TME remains to be further elucidated. Pancreatic cancer scRNA-seq data were analyzed by gene set enrichment analysis, mimetic temporal sequencing analysis and intercellular communication analysis to identify a subpopulation of tumor s with distinct biological functions, in particular one closely related to hypoxia. This hypoxic tumor subgroup was closely associated with poor prognosis, and the risk score model constructed accordingly could effectively predict the overall survival of pancreatic cancer patients. This study deepens the understanding of TME in pancreatic cancer and provides some guidance for predicting the prognosis of pancreatic cancer.

References

[1]  Rahib, L., Smith, B.D., Aizenberg, R., Rosenzweig, A.B., Fleshman, J.M. and Matrisian, L.M. (2014) Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Research, 74, 2913-2921.
https://doi.org/10.1158/0008-5472.can-14-0155
[2]  Chen, W., Zheng, R., Baade, P.D., Zhang, S., Zeng, H., Bray, F., et al. (2016) Cancer Statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132.
https://doi.org/10.3322/caac.21338
[3]  Sherman, M.H. and Beatty, G.L. (2023) Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. Annual Review of Pathology: Mechanisms of Disease, 18, 123-148.
https://doi.org/10.1146/annurev-pathmechdis-031621-024600
[4]  Hwang, B., Lee, J.H. and Bang, D. (2018) Single-Cell RNA Sequencing Technologies and Bioinformatics Pipelines. Experimental & Molecular Medicine, 50, 1-14.
https://doi.org/10.1038/s12276-018-0071-8
[5]  Sachs, N. and Clevers, H. (2014) Organoid Cultures for the Analysis of Cancer Phenotypes. Current Opinion in Genetics & Development, 24, 68-73.
https://doi.org/10.1016/j.gde.2013.11.012
[6]  Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
[7]  Muz, B., de la Puente, P., Azab, F. and Azab, A.K. (2015) The Role of Hypoxia in Cancer Progression, Angiogenesis, Metastasis, and Resistance to Therapy. Hypoxia, 3, 83-92.
https://doi.org/10.2147/hp.s93413
[8]  Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., et al. (2019) Role of Hypoxia in Cancer Therapy by Regulating the Tumor Microenvironment. Molecular Cancer, 18, Article No. 157.
https://doi.org/10.1186/s12943-019-1089-9
[9]  Sun, X., Luo, H., Han, C., Zhang, Y. and Yan, C. (2021) Identification of a Hypoxia-Related Molecular Classification and Hypoxic Tumor Microenvironment Signature for Predicting the Prognosis of Patients with Triple-Negative Breast Cancer. Frontiers in Oncology, 11, Article 700062.
https://doi.org/10.3389/fonc.2021.700062
[10]  Shi, Y., Huang, X., Du, Z. and Tan, J. (2022) Analysis of Single-Cell RNA-Sequencing Data Identifies a Hypoxic Tumor Subpopulation Associated with Poor Prognosis in Triple-Negative Breast Cancer. Mathematical Biosciences and Engineering, 19, 5793-5812.
https://doi.org/10.3934/mbe.2022271
[11]  Yang, X., Weng, X., Yang, Y., Zhang, M., Xiu, Y., Peng, W., et al. (2021) A Combined Hypoxia and Immune Gene Signature for Predicting Survival and Risk Stratification in Triple-Negative Breast Cancer. Aging, 13, 19486-19509.
https://doi.org/10.18632/aging.203360
[12]  Grossman, R.L., Heath, A.P., Ferretti, V., Varmus, H.E., Lowy, D.R., Kibbe, W.A., et al. (2016) Toward a Shared Vision for Cancer Genomic Data. New England Journal of Medicine, 375, 1109-1112.
https://doi.org/10.1056/nejmp1607591
[13]  Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., Zheng, S., Butler, A., et al. (2021) Integrated Analysis of Multimodal Single-Cell Data. Cell, 184, 3573-3587.E29.
https://doi.org/10.1016/j.cell.2021.04.048
[14]  Aran, D., Looney, A.P., Liu, L., Wu, E., Fong, V., Hsu, A., et al. (2019) Reference-based Analysis of Lung Single-Cell Sequencing Reveals a Transitional Profibrotic Macrophage. Nature Immunology, 20, 163-172.
https://doi.org/10.1038/s41590-018-0276-y
[15]  Gao, R., Bai, S., Henderson, Y.C., Lin, Y., Schalck, A., Yan, Y., et al. (2021) Delineating Copy Number and Clonal Substructure in Human Tumors from Single-Cell Transcriptomes. Nature Biotechnology, 39, 599-608.
https://doi.org/10.1038/s41587-020-00795-2
[16]  H?nzelmann, S., Castelo, R. and Guinney, J. (2013) GSVA: Gene Set Variation Analysis for Microarray and RNA-Seq Data. BMC Bioinformatics, 14, Article No. 7.
https://doi.org/10.1186/1471-2105-14-7
[17]  Wang, M., Chen, X., Fang, Y., Zheng, X., Huang, T., Nie, Y., et al. (2024) The Trade-Off between Individual Metabolic Specialization and Versatility Determines the Metabolic Efficiency of Microbial Communities. Cell Systems, 15, 63-74.E5.
https://doi.org/10.1016/j.cels.2023.12.004
[18]  Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., et al. (2019) The Single-Cell Transcriptional Landscape of Mammalian Organogenesis. Nature, 566, 496-502.
https://doi.org/10.1038/s41586-019-0969-x
[19]  Jin, S., Guerrero-Juarez, C.F., Zhang, L., Chang, I., Ramos, R., Kuan, C., et al. (2021) Inference and Analysis of Cell-Cell Communication Using Cellchat. Nature Communications, 12, Article No. 1088.
https://doi.org/10.1038/s41467-021-21246-9
[20]  Liu, W. and Rodgers, G.P. (2016) Olfactomedin 4 Expression and Functions in Innate Immunity, Inflammation, and Cancer. Cancer and Metastasis Reviews, 35, 201-212.
https://doi.org/10.1007/s10555-016-9624-2
[21]  Wang, L., Fu, D., Weng, S., Xu, H., Liu, L., Guo, C., et al. (2023) Genome-Scale CRISPR-Cas9 Screening Stratifies Pancreatic Cancer with Distinct Outcomes and Immunotherapeutic Efficacy. Cellular Signalling, 110, Article ID: 110811.
https://doi.org/10.1016/j.cellsig.2023.110811
[22]  Zhang, J., Yang, J., Lin, C., Liu, W., Huo, Y., Yang, M., et al. (2020) Endoplasmic Reticulum Stress-Dependent Expression of ERO1L Promotes Aerobic Glycolysis in Pancreatic Cancer. Theranostics, 10, 8400-8414.
https://doi.org/10.7150/thno.45124
[23]  Luo, Y., Liu, C., Yao, Y., Tang, X., Yin, E., Lu, Z., et al. (2024) A Comprehensive Pan-Cancer Analysis of Prognostic Value and Potential Clinical Implications of FTH1 in Cancer Immunotherapy. Cancer Immunology, Immunotherapy, 73, Article No. 37.
https://doi.org/10.1007/s00262-023-03625-x
[24]  Schoeps, B., Eckfeld, C., Prokopchuk, O., B?ttcher, J., H?u?ler, D., Steiger, K., et al. (2021) TIMP1 Triggers Neutrophil Extracellular Trap Formation in Pancreatic Cancer. Cancer Research, 81, 3568-3579.
https://doi.org/10.1158/0008-5472.can-20-4125
[25]  Suzuki, K., Watanabe, A., Araki, K., et al. (2018) High STMN1 Expression Is Associated with Tumor Differentiation and Metastasis in Clinical Patients with Pancreatic Cancer. Anticancer Research, 38, 939-944.
https://doi.org/10.21873/anticanres.12307
[26]  ávila-López, P.A., Guerrero, G., Nu?ez-Martínez, H.N., Peralta-Alvarez, C.A., Hernández-Montes, G., álvarez-Hilario, L.G., et al. (2021) H2A.Z Overexpression Suppresses Senescence and Chemosensitivity in Pancreatic Ductal Adenocarcinoma. Oncogene, 40, 2065-2080.
https://doi.org/10.1038/s41388-021-01664-1
[27]  Korbecki, J., Grochans, S., Gutowska, I., Barczak, K. and Baranowska-Bosiacka, I. (2020) CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. International Journal of Molecular Sciences, 21, Article 7619.
https://doi.org/10.3390/ijms21207619
[28]  Wang, C., Kong, L., Kim, S., Lee, S., Oh, S., Jo, S., et al. (2022) The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy. International Journal of Molecular Sciences, 23, Article 10412.
https://doi.org/10.3390/ijms231810412
[29]  Cui, H., Lian, J., Xu, B., Yu, Z., Xiang, H., Shi, J., et al. (2023) Identification of a Bile Acid and Bile Salt Metabolism-Related lncRNA Signature for Predicting Prognosis and Treatment Response in Hepatocellular Carcinoma. Scientific Reports, 13, Article No. 19512.
https://doi.org/10.1038/s41598-023-46805-6
[30]  Yang, Y., Yang, C., Yang, Q., Lu, S., Liu, B., Li, D., et al. (2024) Elucidating Hedgehog Pathway’s Role in HNSCC Progression: Insights from a 6-Gene Signature. Scientific Reports, 14, Article No. 4686.
https://doi.org/10.1038/s41598-024-54937-6
[31]  Liu, Z., Chen, H., Zheng, L., Sun, L. and Shi, L. (2023) Angiogenic Signaling Pathways and Anti-Angiogenic Therapy for Cancer. Signal Transduction and Targeted Therapy, 8, Article No. 198.
https://doi.org/10.1038/s41392-023-01460-1
[32]  Tao, G., Jiao, C., Wang, Y. and Zhou, Q. (2022) Comprehensive Analysis of Hypoxia-Related Genes for Prognosis, Immune Features, and Drugs Treatment Strategy in Gastric Cancer Using Bulk and Single-Cell RNA-Sequencing. Scientific Reports, 12, Article No. 21739.
https://doi.org/10.1038/s41598-022-26395-5
[33]  Dang, C.V., O’Donnell, K.A., Zeller, K.I., Nguyen, T., Osthus, R.C. and Li, F. (2006) The c-Myc Target Gene Network. Seminars in Cancer Biology, 16, 253-264.
https://doi.org/10.1016/j.semcancer.2006.07.014
[34]  Xu, J., Chen, Y. and Olopade, O.I. (2010) MYC and Breast Cancer. Genes & Cancer, 1, 629-640.
https://doi.org/10.1177/1947601910378691

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133