|
电镀含磷废液处理技术探讨
|
Abstract:
本文针对电镀行业所产生的含次磷酸盐废水磷含量高、去除困难、处理效果不稳定等问题,提出了臭氧–双氧水–硫酸亚铁工艺,对次磷酸盐的氧化和总磷去除进行研究。首先添加臭氧和双氧水,利用双氧水和臭氧反应生成羟基自由基,对次磷酸盐进行氧化。待充分反应后再加入硫酸亚铁,硫酸亚铁一方面促进臭氧生成羟基自由基,另一方面和双氧水形成芬顿反应体系,进而将次磷酸盐氧化成正磷酸盐,最后加入氢氧化钙生成磷酸钙沉淀,达到有效去除次磷酸盐的目的。
In view of the problems of high phosphorus content, difficult removal and unstable treatment effect in wastewater containing hypophosphate produced by electroplating industry, ozone-hydrogen peroxide ferrous sulfate process was proposed to study the oxidation of hypophosphate and total phosphorus removal. First, ozone and hydrogen peroxide are added, and hydroxyl radical is formed by the reaction of hydrogen peroxide and ozone to oxidize hypophosphate. After the full reaction, ferrous sulfate is added. On the one hand, ferrous sulfate promotes the formation of hydroxyl radical by ozone, on the other hand, it forms a Fenton reaction system with hydrogen peroxide, and then oxidizes hypophosphate into orthophosphate, and finally adds calcium hydroxide to generate calcium phosphate precipitation to achieve the purpose of effectively removing hypophosphate.
[1] | Mino, T., van Loosdrecht, M.C.M. and Heijnen, J.J. (1998) Microbiology and Biochemistry of the Enhanced Biological Phosphate Removal Process. Water Research, 32, 3193-3207. https://doi.org/10.1016/s0043-1354(98)00129-8 |
[2] | Smith, V.H., Tilman, G.D. and Nekola, J.C. (1999) Eutrophication: Impacts of Excess Nutrient Inputs on Freshwater, Marine, and Terrestrial Ecosystems. Environmental Pollution, 100, 179-196. https://doi.org/10.1016/s0269-7491(99)00091-3 |
[3] | Codd, G.A., Morrison, L.F. and Metcalf, J.S. (2005) Cyanobacterial Toxins: Risk Management for Health Protection. Toxicology and Applied Pharmacology, 203, 264-272. https://doi.org/10.1016/j.taap.2004.02.016 |
[4] | 储荣邦, 关春丽, 储春娟. 焦磷酸盐镀铜生产工艺(I) [J]. 材料保护, 2006(10): 58-66+1. |
[5] | 吴水清. 次亚磷酸盐在化学镀液中的应用研究[J]. 表面技术, 1991(5): 1-7. |
[6] | Guedesmaniero, M., Maiabila, D. and Dezotti, M. (2008) Degradation and Estrogenic Activity Removal of 17β-Estradiol and 17α-Ethinylestradiol by Ozonation and O3/H2O2. Science of the Total Environment, 407, 105-115. https://doi.org/10.1016/j.scitotenv.2008.08.011 |
[7] | Lucas, M.S., Peres, J.A. and Li Puma, G. (2010) Treatment of Winery Wastewater by Ozone-Based Advanced Oxidation Processes (O3, O3/UV and O3/UV/H2O2) in a Pilot-Scale Bubble Column Reactor and Process Economics. Separation and Purification Technology, 72, 235-241. https://doi.org/10.1016/j.seppur.2010.01.016 |
[8] | Byvoet, P., Balis, J.U., Shelley, S.A., Montgomery, M.R. and Barber, M.J. (1995) Detection of Hydroxyl Radicals upon Interaction of Ozone with Aqueous Media or Extracellular Surfactant: The Role of Trace Iron. Archives of Biochemistry and Biophysics, 319, 464-469. https://doi.org/10.1006/abbi.1995.1318 |
[9] | Hellman, T.M. and Hamilton, G.A. (1974) Mechanism of Alkane Oxidation by Ozone in the Presence and Absence of Iron(III) Chloride. Journal of the American Chemical Society, 96, 1530-1535. https://doi.org/10.1021/ja00812a042 |