全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高原低压低氧环境对急性胰腺炎微循环的影响
Effect of Low-Pressure, Low-Oxygen Environment in Plateau on Microcirculation in Acute Pancreatitis

DOI: 10.12677/acm.2024.1472134, PP. 1211-1218

Keywords: 急性胰腺炎,微循环,高原环境
Acute Pancreatitis
, Microcirculation, Plateau Environment

Full-Text   Cite this paper   Add to My Lib

Abstract:

急性胰腺炎是一种临床常见的急腹症,病情复杂多变,病程轻重不等,重症者病死率高;急性胰腺炎发病机制复杂多变,其中微循环障碍对疾病的发生发展起着重要作用。虽然目前关于急性胰腺炎微循环障碍的研究取得了很大的进展,但既往多关注于平原常压常氧条件下,然而关于高原低压低氧环境下的研究较少;同时,近年来随着旅游业的发展,前往高海拔地区旅游或短期居住的人口也在逐年增加。本文结合国内外研究报道,对高原特殊环境下急性胰腺炎微循环障碍进行综述,旨在探讨高原低压低氧环境对急性胰腺炎微循环障碍的影响,以期为探索高原环境急性胰腺炎的发病机制及治疗提供新的思路。
Acute pancreatitis is a common clinical acute abdominal disease, the condition is complex and variable, the course of the disease varies, and the mortality rate of severe cases is high. The pathogenesis of acute pancreatitis is complex and variable, in which microcirculatory disorders play an important role in the development of the disease. Although there has been a great deal of progress in the study of microcirculatory disorders in acute pancreatitis, much of the focus has been on normobaric and normoxic conditions in the plains, with fewer studies in low-pressure, low-oxygen environments in the highlands. However, in recent years, with the development of the tourism industry, the number of people travelling to high-altitude areas for tourism or short-term stays has also been increasing year by year. This paper reviews the microcirculatory disorders of acute pancreatitis in the special environment of plateau in conjunction with domestic and international research reports, aiming to explore the effect of low-pressure and low-oxygen environment of plateau on the microcirculatory disorders of acute pancreatitis, with a view to providing new ideas for exploring the pathogenesis and treatment of acute pancreatitis in the plateau environment.

References

[1]  Boxhoorn, L., Voermans, R.P., Bouwense, S.A., Bruno, M.J., Verdonk, R.C., Boermeester, M.A., et al. (2020) Acute Pancreatitis. The Lancet, 396, 726-734.
https://doi.org/10.1016/s0140-6736(20)31310-6
[2]  Lankisch, P.G., Apte, M. and Banks, P.A. (2015) Acute Pancreatitis. The Lancet, 386, 85-96.
https://doi.org/10.1016/s0140-6736(14)60649-8
[3]  Forsmark, C.E., Swaroop Vege, S. and Wilcox, C.M. (2016) Acute Pancreatitis. New England Journal of Medicine, 375, 1972-1981.
https://doi.org/10.1056/nejmra1505202
[4]  Mederos, M.A., Reber, H.A. and Girgis, M.D. (2021) Acute Pancreatitis. JAMA, 325, 382-390.
https://doi.org/10.1001/jama.2020.20317
[5]  Strum, W.B. and Boland, C.R. (2023) Advances in Acute and Chronic Pancreatitis. World Journal of Gastroenterology, 29, 1194-1201.
https://doi.org/10.3748/wjg.v29.i7.1194
[6]  Lee, P.J. and Papachristou, G.I. (2019) New Insights into Acute Pancreatitis. Nature Reviews Gastroenterology & Hepatology, 16, 479-496.
https://doi.org/10.1038/s41575-019-0158-2
[7]  Garg, P.K. and Singh, V.P. (2019) Organ Failure Due to Systemic Injury in Acute Pancreatitis. Gastroenterology, 156, 2008-2023.
https://doi.org/10.1053/j.gastro.2018.12.041
[8]  Zhang, R., Yu, X., Shen, Y., Yang, C., Liu, F., Ye, S., et al. (2019) Correlation between RBC Changes and Coagulation Parameters in High Altitude Population. Hematology, 24, 325-330.
https://doi.org/10.1080/16078454.2019.1568658
[9]  Li, Y., Zhang, Y. and Zhang, Y. (2018) Research Advances in Pathogenesis and Prophylactic Measures of Acute High Altitude Illness. Respiratory Medicine, 145, 145-152.
https://doi.org/10.1016/j.rmed.2018.11.004
[10]  Li, C., Li, X., Liu, J., Fan, X., You, G., Zhao, L., et al. (2017) Investigation of the Differences between the Tibetan and Han Populations in the Hemoglobin-Oxygen Affinity of Red Blood Cells and in the Adaptation to High-Altitude Environments. Hematology, 23, 309-313.
https://doi.org/10.1080/10245332.2017.1396046
[11]  张盼, 张方信. 高原缺氧环境下重症急性胰腺炎的发病机制和治疗进展[J]. 医学综述, 2010, 16(16): 2411-2414.
[12]  周总光, 曾勇, 程中, 等. 胰腺微循环的结构与功能[J]. 生物医学工程学杂志, 2001, 18(2): 195-200.
[13]  周总光, 程中, 舒晔. 胰腺微循环障碍与急性胰腺炎[J]. 中国实用外科杂志, 1999(9): 10-13.
[14]  侯斐, 刘瑞霞, 阴赪宏. 急性胰腺炎微循环障碍的发生机制及其治疗进展[J]. 临床肝胆病杂志, 2014, 30(8): 817-820.
[15]  邓超, 戴睿武. 重症急性胰腺炎中微循环障碍的研究进展[J]. 西南国防医药, 2015, 25(11): 1266-1268.
[16]  丁丽, 柏维尧, 柯涛, 等. 高原低氧习服研究进展[J]. 实用预防医学, 2015, 22(3): 379-382.
[17]  张卫花, 康龙丽. 高原习服的重要性及研究现状[J]. 国外医学(医学地理分册), 2018, 39(2): 108-112.
[18]  史喜德, 周世强, 刘峰舟, 等. 高原低氧习服的研究进展[J]. 中国现代医学杂志, 2022, 32(24): 40-49.
[19]  Xu, J., Yang, Y., Tang, F., Ga, Q., Tana, W. and Ge, R. (2015) EPAS1 Gene Polymorphisms Are Associated with High Altitude Polycythemia in Tibetans at the Qinghai-Tibetan Plateau. Wilderness & Environmental Medicine, 26, 288-294.
https://doi.org/10.1016/j.wem.2015.01.002
[20]  Zhang, X., Tian, H., Wu, C., Ye, Q., Jiang, X., Chen, L., et al. (2009) Effect of Baicalin on Inflammatory Mediator Levels and Microcirculation Disturbance in Rats with Severe Acute Pancreatitis. Pancreas, 38, 732-738.
https://doi.org/10.1097/mpa.0b013e3181ad9735
[21]  D’Alessandro, A., Nemkov, T., Sun, K., Liu, H., Song, A., Monte, A.A., et al. (2016) Altitudeomics: Red Blood Cell Metabolic Adaptation to High Altitude Hypoxia. Journal of Proteome Research, 15, 3883-3895.
https://doi.org/10.1021/acs.jproteome.6b00733
[22]  Gupta, N. and Ashraf, M. (2012) Exposure to High Altitude: A Risk Factor for Venous Thromboembolism? Seminars in Thrombosis and Hemostasis, 38, 156-163.
https://doi.org/10.1055/s-0032-1301413
[23]  Mith?fer, K., Castillo, C.F., Frick, T.W., Foitzik, T., Bassi, D.G., Lewandrowski, K.B., et al. (1995) Increased Intrapancreatic Trypsinogen Activation in Ischemia-Induced Experimental Pancreatitis. Annals of Surgery, 221, 364-371.
https://doi.org/10.1097/00000658-199504000-00006
[24]  Grewal, H.P., El Din, A.M., Gaber, L., Kotb, M. and Gaber, A.O. (1994) Amelioration of the Physiologic and Biochemical Changes of Acute Pancreatitis Using an Anti-TNF-α Polyclonal Antibody. The American Journal of Surgery, 167, 214-219.
https://doi.org/10.1016/0002-9610(94)90076-0
[25]  彭新刚, 张顺, 卢云, 等. 大鼠重症急性胰腺炎时 IL-6, TNFα-和微循环变化的实验研究[J]. 陕西医学杂志, 2007, 36(10): 1275-1278.
[26]  李振华, 王湘英. 重症急性胰腺炎微循环障碍的研究现状[J]. 现代医药卫生, 2010, 26(19): 2937-2939.
[27]  Sathyanarayan, G., Garg, P.K., Prasad, H. and Tandon, R.K. (2007) Elevated Level of Interleukin-6 Predicts Organ Failure and Severe Disease in Patients with Acute Pancreatitis. Journal of Gastroenterology and Hepatology, 22, 550-554.
https://doi.org/10.1111/j.1440-1746.2006.04752.x
[28]  Chen, Z., Huang, H., He, X., Wu, B. and Liu, Y. (2022) Early Continuous Blood Purification Affects TNF-α, IL-1β, and IL-6 in Patients with Severe Acute Pancreatitis via Inhibiting TLR4 Signaling Pathway. The Kaohsiung Journal of Medical Sciences, 38, 479-485.
https://doi.org/10.1002/kjm2.12497
[29]  高玮, 易静. 活性氧在T淋巴细胞中的作用[J]. 细胞生物学学报, 2018, 40(10): 1787-1792.
[30]  Shi, C., Andersson, R., Zhao, X. and Wang, X. (2005) Potential Role of Reactive Oxygen Species in Pancreatitis-Associated Multiple Organ Dysfunction. Pancreatology, 5, 492-500.
https://doi.org/10.1159/000087063
[31]  He, J., Ma, M., Li, D., Wang, K., Wang, Q., Li, Q., et al. (2021) Sulfiredoxin-1 Attenuates Injury and Inflammation in Acute Pancreatitis through the ROS/ER Stress/Cathepsin B Axis. Cell Death & Disease, 12, Article No. 626.
https://doi.org/10.1038/s41419-021-03923-1
[32]  陈金凤, 蒙诺, 雷宇, 等. ROS-NLRP3信号通路在急性胰腺炎大鼠中的作用机制研究[J]. 海南医学院学报, 2023, 29(2): 7.
[33]  Gomez-Cambronero, L.G., Sabater, L., Pereda, J., et al. (2002) Role of Cytokines and Oxidative Stress in the Pathophysiology of Acute Pancreatitis: Therapeutical Implications. Current Drug Target-Inflammation & Allergy, 1, 393-403.
https://doi.org/10.2174/1568010023344544
[34]  Deng, J., Jiang, W., Chen, C., Lee, L., Li, P., Huang, W., et al. (2020) cordyceps Cicadae Mycelia Ameliorate Cisplatin-Induced Acute Kidney Injury by Suppressing the TLR4/NF-κB/mapk and Activating the HO-1/Nrf2 and Sirt-1/AMPK Pathways in Mice. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 7912763.
https://doi.org/10.1155/2020/7912763
[35]  Bao, L., Li, J., Zha, D., Zhang, L., Gao, P., Yao, T., et al. (2018) Chlorogenic Acid Prevents Diabetic Nephropathy by Inhibiting Oxidative Stress and Inflammation through Modulation of the Nrf2/HO-1 and NF-κB Pathways. International Immunopharmacology, 54, 245-253.
https://doi.org/10.1016/j.intimp.2017.11.021
[36]  张昊悦, 赵蓓, 王业皇, 等. 大黄素通过调节Nrf2/HO-1和MAPKs抑制炎症和氧化应激机制研究[J]. 中国免疫学杂志, 2021, 37(9): 1063-1068.
[37]  张喜平, 李建秋, 程琪辉. 急性胰腺炎中NO和ET作用的两面性[J]. 医学研究杂志, 2007, 36(3): 85-86.
[38]  周守凤, 沈曙光, 郭凯. 急性胰腺炎微循环障碍的机制及治疗进展[J]. 华南国防医学杂志, 2019, 33(6): 433-436.
[39]  Cuthbertson, C.M. and Christophi, C. (2006) Disturbances of the Microcirculation in Acute Pancreatitis. British Journal of Surgery, 93, 518-530.
https://doi.org/10.1002/bjs.5316
[40]  Antkowiak, R., Bialecki, J., Chabowski, M. and Domoslawski, P. (2022) Treatment of Microcirculatory Disturbances in Acute Pancreatitis: Where Are We Now? Pancreas, 51, 415-421.
https://doi.org/10.1097/mpa.0000000000002044
[41]  彭凯新, 文礼. 急性胰腺炎的发病机制研究进展及未来展望[J/OL]. 西安交通大学学报(医学版): 1-18.
http://kns.cnki.net/kcms/detail/61.1399.R.20240115.1843.008.html, 2024-02-23.
[42]  Villa, E., Marchetti, S. and Ricci, J. (2018) No Parkin Zone: Mitophagy without Parkin. Trends in Cell Biology, 28, 882-895.
https://doi.org/10.1016/j.tcb.2018.07.004
[43]  王硕, 范祖森. 免疫细胞可塑性与免疫病理机制研究进展[J]. 中国免疫学杂志, 2018, 34(5): 641-646.
[44]  Yang, Z., Meng, X. and Xu, P. (2015) Central Role of Neutrophil in the Pathogenesis of Severe Acute Pancreatitis. Journal of Cellular and Molecular Medicine, 19, 2513-2520.
https://doi.org/10.1111/jcmm.12639
[45]  Gukovskaya, A.S., Vaquero, E., Zaninovic, V., Gorelick, F.S., Lusis, A.J., Brennan, M., et al. (2002) Neutrophils and NADPH Oxidase Mediate Intrapancreatic Trypsin Activation in Murine Experimental Acute Pancreatitis. Gastroenterology, 122, 974-984.
https://doi.org/10.1053/gast.2002.32409
[46]  Hartman, H., Abdulla, A., Awla, D., Lindkvist, B., Jeppsson, B., Thorlacius, H., et al. (2011) P-Selectin Mediates Neutrophil Rolling and Recruitment in Acute Pancreatitis. British Journal of Surgery, 99, 246-255.
https://doi.org/10.1002/bjs.7775
[47]  Hu, F., Lou, N., Jiao, J., Guo, F., Xiang, H. and Shang, D. (2020) Macrophages in Pancreatitis: Mechanisms and Therapeutic Potential. Biomedicine & Pharmacotherapy, 131, Article ID: 110693.
https://doi.org/10.1016/j.biopha.2020.110693
[48]  Wu, J., Zhang, L., Shi, J., He, R., Yang, W., Habtezion, A., et al. (2020) Macrophage Phenotypic Switch Orchestrates the Inflammation and Repair/regeneration Following Acute Pancreatitis Injury. eBioMedicine, 58, Article ID: 102920.
https://doi.org/10.1016/j.ebiom.2020.102920
[49]  Duan, F., Wang, X., Wang, H., Wang, Y., Zhang, Y., Chen, J., et al. (2022) GDF11 Ameliorates Severe Acute Pancreatitis through Modulating Macrophage M1 and M2 Polarization by Targeting the TGFβR1/SMAD-2 Pathway. International Immunopharmacology, 108, Article ID: 108777.
https://doi.org/10.1016/j.intimp.2022.108777
[50]  Demols, A., Le Moine, O., Desalle, F., Quertinmont, E., van Laethem, J. and Devière, J. (2000) CD4+ T Cells Play an Important Role in Acute Experimental Pancreatitis in Mice. Gastroenterology, 118, 582-590.
https://doi.org/10.1016/s0016-5085(00)70265-4
[51]  胡婧楠, 田亚欣, 何涛. 急性胰腺炎患者Th17/Treg细胞平衡与IL-23/IL-17炎症轴的关系[J]. 中国急救复苏与灾害医学杂志, 2022, 17(12): 1630-1633.
[52]  Rosser, E.C. and Mauri, C. (2015) Regulatory B Cells: Origin, Phenotype, and Function. Immunity, 42, 607-612.
https://doi.org/10.1016/j.immuni.2015.04.005

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133