全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Local Plants Potentially Suitable for Phytoremediation of Soils Polluted by Heavy Metals: The Case of Landfill Sites

DOI: 10.4236/gep.2024.127005, PP. 72-88

Keywords: Heavy Metals, Phytoremediation, Phyllanthus amarus, Alternanthera sessilis, Amaranthus spinosus

Full-Text   Cite this paper   Add to My Lib

Abstract:

Landfills are contaminated sites that need to be cleaned up to prevent human and environmental exposure to pollutants. This article aims to identify local plants capable of restoring soil polluted by heavy metals. To this end, plant species at the Bonoua landfill were inventoried. X-ray fluorescence spectrometry was used to determine the heavy metal content of soil and plants from the landfill. The bioconcentration factor (BCF) of metals in plants was evaluated. The Bonoua landfill is covered with 62 plant species, comprising 28 botanical families and 50 genera. The BCF varied from 0.08 (titanium) to 2.27 (strontium) for Phyllanthus amarus; from 0.06 (titanium) to 1.83 (copper) for Alternanthera sessilis and from 0.03 (arsenic) to 2.10 (strontium) for Amaranthus spinosus. Phyllanthus amarus, Alternanthera sessilis, and Amaranthus spinosus are strontium-accumulating species (BCF > 1). Similarly, copper BCF values were above 1 for Phyllanthus amarus, and Alternanthera sessilis. These two plant species are therefore copper accumulators. In short, Phyllanthus amarus, Alternanthera sessilis, and Amaranthus spinosus are candidate species for phytoremediation of heavy metal-polluted soils, given their BCF > 1.

References

[1]  Adjakpa, J. B., Yedomonhan, H., Ahoton, L. E., Weesie, P. D., & Akpo, L. E. (2013). Structure et diversité floristique des îlots de forêts riveraines communautaires de la Basse vallée de la Sô au Sud-Est du Bénin. Journal of Applied Biosciences, 65, 4902-4913.
https://doi.org/10.4314/jab.v65i0.89573
[2]  Adjiri, A., Goné, D.L, Kouamé, I.K., Kamagaté, B., & Biémi, J. (2009). Caractérisation de la pollution chimique et microbiologique de l’environnement de la décharge d’Akouédo, Abidjan-Côte d’Ivoire. International Journal of Biological and Chemical Sciences, 2, 401-410.
https://doi.org/10.4314/ijbcs.v2i4.39768
[3]  Ake, G. E., Kouame, K. J., Koffi, A. B., & Jourda, J. P. (2018). Cartographie des zones potentielles de recharge de la nappe de Bonoua (sud-est de la Côte d’Ivoire). Revue des sciences de leau, 31, 129-144.
https://doi.org/10.7202/1051696ar
[4]  Aké-Assi, L. (2001). Flore de la Côte-d’Ivoire: Catalogue systématique, biogéographique et écologie. Boissiera, 57, 1-396.
[5]  Asmoay, A. S. A., Salman, S. A., El-Gohary, A. M., & Sabet, H. S. (2019). Evaluation of Heavy Metal Mobility in Contaminated Soils between Abu Qurqas and Dyer Mawas Area, El Minya Governorate, Upper Egypt. Bulletin of the National Research Centre, 43, Article No. 88.
https://doi.org/10.1186/s42269-019-0133-7
[6]  Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology, 12, Article 643972.
https://doi.org/10.3389/fphar.2021.643972
[7]  Bellouard, M. (2023). Contamination du poisson par les métaux lourds et risque sanitaire. Toxicologie Analytique et Clinique, 35, S16-S17.
https://doi.org/10.1016/j.toxac.2023.03.016
[8]  Bhuyan, B., Baishya, K., & Rajak, P. (2018). Effects of Alternanthera sessilis on Liver Function in Carbon Tetra Chloride Induced Hepatotoxicity in Wister Rat Model. Indian Journal of Clinical Biochemistry, 33, 190-195.
https://doi.org/10.1007/s12291-017-0666-1
[9]  Buscaroli, A. (2017). An Overview of Indexes to Evaluate Terrestrial Plants for Phytoremediation Purposes (Review). Ecological Indicators, 82, 367-380.
https://doi.org/10.1016/j.ecolind.2017.07.003
[10]  CEAEQ (2003). Détermination de la matière organique par incinération: Méthode de perte au feu (PAF). MA. 1010-PAF 1.0. Ministère de l’Environnement du Québec.
[11]  CEAEQ (2014). Détermination du pH: Méthode électrométrique, MA. Ministère du Développement Durable, de l’Environnement, de la Faune et des Parcs du Québec.
[12]  Chaer, I., El Cadi, A., Fakih A.L., Khaddor, M. & Brigui, J. (2016). Détermination du degré de contamination du site de la décharge, non contrôlée, de la ville de Tanger par quelques métaux lourds. Journal of Materials and Environmental Science, 7, 541-546.
[13]  Chase, M. W., Christenhusz, M. J. M. et al. (2016). An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG IV. Botanical Journal of the Linnean Society, 181, 1-20.
https://doi.org/10.1111/boj.12385
[14]  Chen, M., Zhang, X., Jiang, P., Liu, J., You, S., & Lv, Y. (2022). Advances in Heavy Metals Detoxification, Tolerance, Accumulation Mechanisms, and Properties Enhancement of leersia Hexandra Swartz. Journal of Plant Interactions, 17, 766-778.
https://doi.org/10.1080/17429145.2022.2096266
[15]  Cui, S., Zhang, T., Zhao, S., Li, P., Zhou, Q., Zhang, Q. et al. (2012). Evaluation of Three Ornamental Plants for Phytoremediation of Pb-Contamined Soil. International Journal of Phytoremediation, 15, 299-306.
https://doi.org/10.1080/15226514.2012.694502
[16]  Durante-Yánez, E. V., Martínez-Macea, M. A., Enamorado-Montes, G., Combatt Caballero, E., & Marrugo-Negrete, J. (2022). Phytoremediation of Soils Contaminated with Heavy Metals from Gold Mining Activities Using Clidemia sericea D. Don. Plants, 11, Article 597.
https://doi.org/10.3390/plants11050597
[17]  Hölzle, I., Somani, M., Ramana, G. V., & Datta, M. (2022). Heavy Metals in Soil-Like Material from Landfills—Resource or Contaminants? Journal of Cleaner Production, 369, Article ID: 133136.
https://doi.org/10.1016/j.jclepro.2022.133136
[18]  Hussein, M., Yoneda, K., Mohd-Zaki, Z., Amir, A., & Othman, N. (2021). Heavy Metals in Leachate, Impacted Soils and Natural Soils of Different Landfills in Malaysia: An Alarming Threat. Chemosphere, 267, Article ID: 128874.
https://doi.org/10.1016/j.chemosphere.2020.128874
[19]  Hwong, C. S., Leong, K. H., Abdul Aziz, A., Mat Junit, S., Mohd Noor, S., & Kong, K. W. (2022). Alternanthera sessilis: Uncovering the Nutritional and Medicinal Values of an Edible Weed. Journal of Ethnopharmacology, 298, Article ID: 115608.
https://doi.org/10.1016/j.jep.2022.115608
[20]  Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdisciplinary Toxicology, 7, 60-72.
https://doi.org/10.2478/intox-2014-0009
[21]  Kassuya, C. A., Leite, D. F., de Melo, L. V., Rehder, V. L., & Calixto, J. B. (2005). Anti-inflammatory Properties of Extracts, Fractions and Lignans Isolated from Phyllanthus amarus. Planta Medica, 71, 721-726.
https://doi.org/10.1055/s-2005-871258
[22]  Kpan, K. K. G., N’guettia, K. R., Kouakou, Y. U., & Dembele, A. (2022). Determination of the Glyphosate Content in Liquid and Dry Formulations by HPLC-UV: Pre-Column Derivation with 9-Fluorenylmethyl Chloroformate (FMOC). Chromatographia, 85, 655-664.
https://doi.org/10.1007/s10337-022-04173-9
[23]  Malan, D. F., Aké-Assi, L., Tra Bi, F. H., & Neuba, D. (2007). Diversité floristique du Parc National des Îles Ehotilé (littoral est de la Côte d’Ivoire). Bois & Forêts des Tropiques, 292, 49-58.
[24]  Masse, D., Ndiénor, M., Hien, E., Rafolisy, T., Ndour, Y., Bilgo, A., Houot, S. & Aubry C. (2017). Restauration de la productivité des sols tropicaux et méditerranéens. IRD.
[25]  Mirecki, N., Agic, R., Sunic, L., Milenkovic, L., & Ilic Z. S. (2015). Transfer Factor as Indicator of Heavy Metals Content in Plants. Fresenius Environmental Bulletin, 24, 4212-4219.
[26]  Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A. et al. (2022). Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. Journal of King Saud University-Science, 34, Article ID: 101865.
https://doi.org/10.1016/j.jksus.2022.101865
[27]  Musa, B., & Abdullahi, M. S. (2013). The Toxicological Effects of Cadmium and Some Other Heavy Metals in Plants and Humans. International Journal of Water Resources and Environmental Engineering, 2, 245-249.
[28]  Mustafa, H. M., & Hayder, G. (2021). Recent Studies on Applications of Aquatic Weed Plants in Phytoremediation of Wastewater: A Review Article. Ain Shams Engineering Journal, 12, 355-365.
https://doi.org/10.1016/j.asej.2020.05.009
[29]  Nguemté, P. M., Wafo, G. V. D., Djocgoue, P. F., Kengne Noumsi, I. M., & Wanko Ngnien, A. (2017). Phytoremédiation de sols pollués par les hydrocarbures—Évaluation des potentialités de six espèces végétales tropicales. Revue des sciences de leau, 30, 13-19.
https://doi.org/10.7202/1040058ar
[30]  Oyewo, O. A., Adeniyi, A., Bopape, M. F., & Onyango, M. S. (2020). Heavy Metal Mobility in Surface Water and Soil, Climate Change, and Soil Interactions. In M. N. Vara Prasad, & M. Pietrzykowski (Eds.), Climate Change and Soil Interactions (pp. 51-88). Elsevier.
https://doi.org/10.1016/b978-0-12-818032-7.00004-7
[31]  Petruzzelli, G., Pedron, F., Barbafieri, M., Rosellini, I., Grifoni, M., & Franchi, E. (2021). Remediation Technologies, from Incineration to Phytoremediation: The Rediscovery of the Essential Role of Soil Quality. In R. Prasad (Ed.), Phytoremediation for Environmental Sustainability (pp. 113-149). Springer.
https://doi.org/10.1007/978-981-16-5621-7_6
[32]  Rascio, N., & Navari-Izzo, F. (2011). Heavy Metal Hyperaccumulating Plants: How and Why Do They Do It? And What Makes Them So Interesting? Plant Science, 180, 169-181.
https://doi.org/10.1016/j.plantsci.2010.08.016
[33]  RGPH (2021). Resultats Globaux, Institut National de la Statistique.
[34]  Sarker, U., & Oba, S. (2019). Nutraceuticals, Antioxidant Pigments, and Phytochemicals in the Leaves of Amaranthus Spinosus and Amaranthus Viridis Weedy Species. Scientific Reports, 9, Article No. 20413.
https://doi.org/10.1038/s41598-019-50977-5
[35]  Scullion, J. (2006). Remediating Polluted Soils. Naturwissenschaften, 93, 51-65.
https://doi.org/10.1007/s00114-005-0079-5
[36]  Sharma, J. K., Kumar, N., Singh, N. P., & Santal, A. R. (2023). Phytoremediation Technologies and Their Mechanism for Removal of Heavy Metal from Contaminated Soil: An Approach for a Sustainable Environment. Frontiers in Plant Science, 14, Article 1076876.
https://doi.org/10.3389/fpls.2023.1076876
[37]  Spolnik, Z., Belikov, K., Van Meel, K., Adriaenssens, E., De Roeck, F., & Van Grieken, R. (2005). Optimization of Measurement Conditions of an Energy Dispersive X-Ray Fluorescence Spectrometer with High-Energy Polarized Beam Excitation for Analysis of Aerosol Filters. Applied Spectroscopy, 59, 1465-1469.
https://doi.org/10.1366/000370205775142647
[38]  Unak, P., Yurt Lambrecht, F., Biber, F. Z., & Darcan, S. (2007). Iodine Measurements by Isotope Dilution Analysis in Drinking Water in Western Turkey. Journal of Radioanalytical and Nuclear Chemistry, 273, 649-651.
https://doi.org/10.1007/s10967-007-0925-3
[39]  Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in Native Plants Growing on a Contaminated Florida Site. Science of the Total Environment, 368, 456-464.
https://doi.org/10.1016/j.scitotenv.2006.01.016

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133