Landfills are contaminated sites that need to be cleaned up to prevent human and environmental exposure to pollutants. This article aims to identify local plants capable of restoring soil polluted by heavy metals. To this end, plant species at the Bonoua landfill were inventoried. X-ray fluorescence spectrometry was used to determine the heavy metal content of soil and plants from the landfill. The bioconcentration factor (BCF) of metals in plants was evaluated. The Bonoua landfill is covered with 62 plant species, comprising 28 botanical families and 50 genera. The BCF varied from 0.08 (titanium) to 2.27 (strontium) for Phyllanthus amarus; from 0.06 (titanium) to 1.83 (copper) for Alternanthera sessilis and from 0.03 (arsenic) to 2.10 (strontium) for Amaranthus spinosus. Phyllanthusamarus, Alternantherasessilis, and Amaranthusspinosus are strontium-accumulating species (BCF > 1). Similarly, copper BCF values were above 1 for Phyllanthusamarus, and Alternantherasessilis. These two plant species are therefore copper accumulators. In short, Phyllanthusamarus, Alternantherasessilis, and Amaranthusspinosus are candidate species for phytoremediation of heavy metal-polluted soils, given their BCF > 1.
References
[1]
Adjakpa, J. B., Yedomonhan, H., Ahoton, L. E., Weesie, P. D., & Akpo, L. E. (2013). Structure et diversité floristique des îlots de forêts riveraines communautaires de la Basse vallée de la Sô au Sud-Est du Bénin. JournalofAppliedBiosciences,65, 4902-4913. https://doi.org/10.4314/jab.v65i0.89573
[2]
Adjiri, A., Goné, D.L, Kouamé, I.K., Kamagaté, B., & Biémi, J. (2009). Caractérisation de la pollution chimique et microbiologique de l’environnement de la décharge d’Akouédo, Abidjan-Côte d’Ivoire. InternationalJournalofBiologicalandChemicalSciences,2, 401-410. https://doi.org/10.4314/ijbcs.v2i4.39768
[3]
Ake, G. E., Kouame, K. J., Koffi, A. B., & Jourda, J. P. (2018). Cartographie des zones potentielles de recharge de la nappe de Bonoua (sud-est de la Côte d’Ivoire). Revuedessciencesdel’eau,31, 129-144. https://doi.org/10.7202/1051696ar
[4]
Aké-Assi, L. (2001). Flore de la Côte-d’Ivoire: Catalogue systématique, biogéographique et écologie. Boissiera, 57, 1-396.
[5]
Asmoay, A. S. A., Salman, S. A., El-Gohary, A. M., & Sabet, H. S. (2019). Evaluation of Heavy Metal Mobility in Contaminated Soils between Abu Qurqas and Dyer Mawas Area, El Minya Governorate, Upper Egypt. BulletinoftheNationalResearchCentre,43, Article No. 88. https://doi.org/10.1186/s42269-019-0133-7
[6]
Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. FrontiersinPharmacology,12, Article 643972. https://doi.org/10.3389/fphar.2021.643972
[7]
Bellouard, M. (2023). Contamination du poisson par les métaux lourds et risque sanitaire. ToxicologieAnalytiqueetClinique,35, S16-S17. https://doi.org/10.1016/j.toxac.2023.03.016
[8]
Bhuyan, B., Baishya, K., & Rajak, P. (2018). Effects of Alternanthera sessilis on Liver Function in Carbon Tetra Chloride Induced Hepatotoxicity in Wister Rat Model. IndianJournalofClinicalBiochemistry,33, 190-195. https://doi.org/10.1007/s12291-017-0666-1
[9]
Buscaroli, A. (2017). An Overview of Indexes to Evaluate Terrestrial Plants for Phytoremediation Purposes (Review). EcologicalIndicators,82, 367-380. https://doi.org/10.1016/j.ecolind.2017.07.003
[10]
CEAEQ (2003). Détermination de la matière organique par incinération: Méthode de perte au feu (PAF). MA. 1010-PAF 1.0. Ministère de l’Environnement du Québec.
[11]
CEAEQ (2014). Détermination du pH: Méthode électrométrique, MA. Ministère du Développement Durable, de l’Environnement, de la Faune et des Parcs du Québec.
[12]
Chaer, I., El Cadi, A., Fakih A.L., Khaddor, M. & Brigui, J. (2016). Détermination du degré de contamination du site de la décharge, non contrôlée, de la ville de Tanger par quelques métaux lourds. Journal of Materials and Environmental Science,7, 541-546.
[13]
Chase, M. W., Christenhusz, M. J. M. et al. (2016). An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG IV. BotanicalJournaloftheLinneanSociety,181, 1-20. https://doi.org/10.1111/boj.12385
[14]
Chen, M., Zhang, X., Jiang, P., Liu, J., You, S., & Lv, Y. (2022). Advances in Heavy Metals Detoxification, Tolerance, Accumulation Mechanisms, and Properties Enhancement of leersiaHexandra Swartz. JournalofPlantInteractions,17, 766-778. https://doi.org/10.1080/17429145.2022.2096266
[15]
Cui, S., Zhang, T., Zhao, S., Li, P., Zhou, Q., Zhang, Q. et al. (2012). Evaluation of Three Ornamental Plants for Phytoremediation of Pb-Contamined Soil. InternationalJournalofPhytoremediation,15, 299-306. https://doi.org/10.1080/15226514.2012.694502
[16]
Durante-Yánez, E. V., Martínez-Macea, M. A., Enamorado-Montes, G., Combatt Caballero, E., & Marrugo-Negrete, J. (2022). Phytoremediation of Soils Contaminated with Heavy Metals from Gold Mining Activities Using Clidemia sericea D. Don. Plants,11, Article 597. https://doi.org/10.3390/plants11050597
[17]
Hölzle, I., Somani, M., Ramana, G. V., & Datta, M. (2022). Heavy Metals in Soil-Like Material from Landfills—Resource or Contaminants? JournalofCleanerProduction,369, Article ID: 133136. https://doi.org/10.1016/j.jclepro.2022.133136
[18]
Hussein, M., Yoneda, K., Mohd-Zaki, Z., Amir, A., & Othman, N. (2021). Heavy Metals in Leachate, Impacted Soils and Natural Soils of Different Landfills in Malaysia: An Alarming Threat. Chemosphere,267, Article ID: 128874. https://doi.org/10.1016/j.chemosphere.2020.128874
[19]
Hwong, C. S., Leong, K. H., Abdul Aziz, A., Mat Junit, S., Mohd Noor, S., & Kong, K. W. (2022). Alternanthera sessilis: Uncovering the Nutritional and Medicinal Values of an Edible Weed. JournalofEthnopharmacology,298, Article ID: 115608. https://doi.org/10.1016/j.jep.2022.115608
[20]
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, Mechanism and Health Effects of Some Heavy Metals. InterdisciplinaryToxicology,7, 60-72. https://doi.org/10.2478/intox-2014-0009
[21]
Kassuya, C. A., Leite, D. F., de Melo, L. V., Rehder, V. L., & Calixto, J. B. (2005). Anti-inflammatory Properties of Extracts, Fractions and Lignans Isolated from Phyllanthusamarus. PlantaMedica,71, 721-726. https://doi.org/10.1055/s-2005-871258
[22]
Kpan, K. K. G., N’guettia, K. R., Kouakou, Y. U., & Dembele, A. (2022). Determination of the Glyphosate Content in Liquid and Dry Formulations by HPLC-UV: Pre-Column Derivation with 9-Fluorenylmethyl Chloroformate (FMOC). Chromatographia,85, 655-664. https://doi.org/10.1007/s10337-022-04173-9
[23]
Malan, D. F., Aké-Assi, L., Tra Bi, F. H., & Neuba, D. (2007). Diversité floristique du Parc National des Îles Ehotilé (littoral est de la Côte d’Ivoire). Bois & Forêts des Tropiques, 292, 49-58.
[24]
Masse, D., Ndiénor, M., Hien, E., Rafolisy, T., Ndour, Y., Bilgo, A., Houot, S. & Aubry C. (2017). Restauration de la productivité des sols tropicaux et méditerranéens. IRD.
[25]
Mirecki, N., Agic, R., Sunic, L., Milenkovic, L., & Ilic Z. S. (2015). Transfer Factor as Indicator of Heavy Metals Content in Plants. Fresenius Environmental Bulletin, 24, 4212-4219.
[26]
Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. B., Nainu, F., Khusro, A. et al. (2022). Impact of Heavy Metals on the Environment and Human Health: Novel Therapeutic Insights to Counter the Toxicity. JournalofKingSaudUniversity-Science,34, Article ID: 101865. https://doi.org/10.1016/j.jksus.2022.101865
[27]
Musa, B., & Abdullahi, M. S. (2013). The Toxicological Effects of Cadmium and Some Other Heavy Metals in Plants and Humans. International Journal of Water Resources and Environmental Engineering, 2, 245-249.
[28]
Mustafa, H. M., & Hayder, G. (2021). Recent Studies on Applications of Aquatic Weed Plants in Phytoremediation of Wastewater: A Review Article. AinShamsEngineeringJournal,12, 355-365. https://doi.org/10.1016/j.asej.2020.05.009
[29]
Nguemté, P. M., Wafo, G. V. D., Djocgoue, P. F., Kengne Noumsi, I. M., & Wanko Ngnien, A. (2017). Phytoremédiation de sols pollués par les hydrocarbures—Évaluation des potentialités de six espèces végétales tropicales. Revuedessciencesdel’eau,30, 13-19. https://doi.org/10.7202/1040058ar
[30]
Oyewo, O. A., Adeniyi, A., Bopape, M. F., & Onyango, M. S. (2020). Heavy Metal Mobility in Surface Water and Soil, Climate Change, and Soil Interactions. In M. N. Vara Prasad, & M. Pietrzykowski (Eds.), ClimateChangeandSoilInteractions (pp. 51-88). Elsevier. https://doi.org/10.1016/b978-0-12-818032-7.00004-7
[31]
Petruzzelli, G., Pedron, F., Barbafieri, M., Rosellini, I., Grifoni, M., & Franchi, E. (2021). Remediation Technologies, from Incineration to Phytoremediation: The Rediscovery of the Essential Role of Soil Quality. In R. Prasad (Ed.), PhytoremediationforEnvironmentalSustainability (pp. 113-149). Springer. https://doi.org/10.1007/978-981-16-5621-7_6
[32]
Rascio, N., & Navari-Izzo, F. (2011). Heavy Metal Hyperaccumulating Plants: How and Why Do They Do It? And What Makes Them So Interesting? PlantScience,180, 169-181. https://doi.org/10.1016/j.plantsci.2010.08.016
[33]
RGPH (2021). Resultats Globaux, Institut National de la Statistique.
[34]
Sarker, U., & Oba, S. (2019). Nutraceuticals, Antioxidant Pigments, and Phytochemicals in the Leaves of Amaranthus Spinosus and Amaranthus Viridis Weedy Species. ScientificReports,9, Article No. 20413. https://doi.org/10.1038/s41598-019-50977-5
[35]
Scullion, J. (2006). Remediating Polluted Soils. Naturwissenschaften,93, 51-65. https://doi.org/10.1007/s00114-005-0079-5
[36]
Sharma, J. K., Kumar, N., Singh, N. P., & Santal, A. R. (2023). Phytoremediation Technologies and Their Mechanism for Removal of Heavy Metal from Contaminated Soil: An Approach for a Sustainable Environment. FrontiersinPlantScience,14, Article 1076876. https://doi.org/10.3389/fpls.2023.1076876
[37]
Spolnik, Z., Belikov, K., Van Meel, K., Adriaenssens, E., De Roeck, F., & Van Grieken, R. (2005). Optimization of Measurement Conditions of an Energy Dispersive X-Ray Fluorescence Spectrometer with High-Energy Polarized Beam Excitation for Analysis of Aerosol Filters. AppliedSpectroscopy,59, 1465-1469. https://doi.org/10.1366/000370205775142647
[38]
Unak, P., Yurt Lambrecht, F., Biber, F. Z., & Darcan, S. (2007). Iodine Measurements by Isotope Dilution Analysis in Drinking Water in Western Turkey. JournalofRadioanalyticalandNuclearChemistry,273, 649-651. https://doi.org/10.1007/s10967-007-0925-3
[39]
Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in Native Plants Growing on a Contaminated Florida Site. ScienceoftheTotalEnvironment,368, 456-464. https://doi.org/10.1016/j.scitotenv.2006.01.016