全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Advancing Early Detection of Colorectal Adenomatous Polyps via Genetic Data Analysis: A Hybrid Machine Learning Approach

DOI: 10.4236/jcc.2024.127003, PP. 23-38

Keywords: Colorectal Adenoma Detection, Colorectal Cancer Diagnosis, Hybrid Machine Learning, Genetics Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study, a hybrid machine learning (HML)-based approach, incorporating Genetic data analysis (GDA), is proposed to accurately identify the presence of adenomatous colorectal polyps (ACRP) which is a crucial early detector of colorectal cancer (CRC). The present study develops a classification ensemble model based on tuned hyperparameters. Surpassing accuracy percentages of early detection approaches used in previous studies, the current method exhibits exceptional performance in identifying ACRP and diagnosing CRC, overcoming limitations of CRC traditional methods that are based on error-prone manual examination. Particularly, the method demonstrates the following CRP identification accuracy data: 97.7 ± 1.1, precision: 94.3 ± 5, recall: 96.0 ± 3, F1-score: 95.7 ± 4, specificity: 97.3 ± 1.2, average AUC: 0.97.3 ± 0.02, and average p-value: 0.0425 ± 0.07. The findings underscore the potential of this method for early detection of ACRP as well as clinical use in the development of CRC treatment planning strategies. The advantages of this approach are highly expected to contribute to the prevention and reduction of CRC mortality.

References

[1]  Keum, N. and Giovannucci, E. (2019) Global Burden of Colorectal Cancer: Emerging Trends, Risk Factors and Prevention Strategies. Nature Reviews Gastroenterology & Hepatology, 16, 713-732.
https://doi.org/10.1038/s41575-019-0189-8
[2]  Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2021) Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians, 71, 7-33.
https://doi.org/10.3322/caac.21654
[3]  Giaquinto, A.N., Miller, K.D., Tossas, K.Y., Winn, R.A., Jemal, A. and Siegel, R.L. (2022) Cancer Statistics for African American/Black People 2022. CA: A Cancer Journal for Clinicians, 72, 202-229.
https://doi.org/10.3322/caac.21718
[4]  Sinicrope, F.A. (2022) Increasing Incidence of Early-Onset Colorectal Cancer. New England Journal of Medicine, 386, 1547-1558.
https://doi.org/10.1056/nejmra2200869
[5]  WCRF International (2022) Colorectal Cancer Statistics.
https://www.wcrf.org/can-cer-trends/colorectal-cancer-statistics/
[6]  Salimy, S., Lanjanian, H., Abbasi, K., Salimi, M., Najafi, A., Tapak, L., et al. (2023) A Deep Learning-Based Framework for Predicting Survival-Associated Groups in Colon Cancer by Integrating Multi-Omics and Clinical Data. Heliyon, 9, e17653.
https://doi.org/10.1016/j.heliyon.2023.e17653
[7]  Sun, P., Fan, S., Li, S., Zhao, Y., Lu, C., Wong, K., et al. (2023) Automated Exploitation of Deep Learning for Cancer Patient Stratification across Multiple Types. Bioinformatics, 39, btad654.
https://doi.org/10.1093/bioinformatics/btad654
[8]  Tharwat, M., Sakr, N.A., El-Sappagh, S., Soliman, H., Kwak, K. and Elmogy, M. (2022) Colon Cancer Diagnosis Based on Machine Learning and Deep Learning: Modalities and Analysis Techniques. Sensors, 22, Article 9250.
https://doi.org/10.3390/s22239250
[9]  Tanwar, S., Vijayalakshmi, S., Sabharwal, M., Kaur, M., AlZubi, A.A. and Lee, H. (2022) [Retracted] Detection and Classification of Colorectal Polyp Using Deep Learning. BioMed Research International, 2022, Article ID: 2805607.
https://doi.org/10.1155/2022/2805607
[10]  Kaminski, M.F., Wieszczy, P., Rupinski, M., Wojciechowska, U., Didkowska, J., Kraszewska, E., et al. (2017) Increased Rate of Adenoma Detection Associates with Reduced Risk of Colorectal Cancer and Death. Gastroenterology, 153, 98-105.
https://doi.org/10.1053/j.gastro.2017.04.006
[11]  Testa, U., Pelosi, E. and Castelli, G. (2018) Colorectal Cancer: Genetic Abnormalities, Tumor Progression, Tumor Heterogeneity, Clonal Evolution and Tumor-Initiating Cells. Medical Sciences, 6, Article 31.
https://doi.org/10.3390/medsci6020031
[12]  Bhonde, S.B. and Prasad, J.R. (2021) Deep Learning Techniques in Cancer Prediction Using Genomic Profiles. 2021 6th International Conference for Convergence in Technology (I2CT), Maharashtra, 2-4 April 2021, 1-9.
https://doi.org/10.1109/i2ct51068.2021.9417985
[13]  Ebner, D.W. and Kisiel, J.B. (2020) Stool-Based Tests for Colorectal Cancer Screening: Performance Benchmarks Lead to High Expected Efficacy. Current Gastroenterology Reports, 22, Article No. 32.
https://doi.org/10.1007/s11894-020-00770-6
[14]  Rodriguez-Bigas, M.A., Boland, C.R., Hamilton, S.R., Henson, D.E., Srivastava, S., Jass, J.R., et al. (1997) A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: Meeting Highlights and Bethesda Guidelines. JNCI Journal of the National Cancer Institute, 89, 1758-1762.
https://doi.org/10.1093/jnci/89.23.1758
[15]  Stracci, F., Zorzi, M. and Grazzini, G. (2014) Colorectal Cancer Screening: Tests, Strategies, and Perspectives. Frontiers in Public Health, 2, Article 210.
https://doi.org/10.3389/fpubh.2014.00210
[16]  Issa, I.A. and Noureddine, M. (2017) Colorectal Cancer Screening: An Updated Review of the Available Options. World Journal of Gastroenterology, 23, 5086-5096.
https://doi.org/10.3748/wjg.v23.i28.5086
[17]  Su, Y., Tian, X., Gao, R., Guo, W., Chen, C., Chen, C., et al. (2022) Colon Cancer Diagnosis and Staging Classification Based on Machine Learning and Bioinformatics Analysis. Computers in Biology and Medicine, 145, Article ID: 105409.
https://doi.org/10.1016/j.compbiomed.2022.105409
[18]  El-Shami, K., Oeffinger, K.C., Erb, N.L., Willis, A., Bretsch, J.K., Pratt-Chapman, M.L., et al. (2015) American Cancer Society Colorectal Cancer Survivorship Care Guidelines. CA: A Cancer Journal for Clinicians, 65, 427-455.
https://doi.org/10.3322/caac.21286
[19]  Koppad, S., Basava, A., Nash, K., Gkoutos, G.V. and Acharjee, A. (2022) Machine Learning-Based Identification of Colon Cancer Candidate Diagnostics Genes. Biology, 11, Article 365.
https://doi.org/10.3390/biology11030365
[20]  Lacalamita, A., Piccinno, E., Scalavino, V., Bellotti, R., Giannelli, G. and Serino, G. (2021) A Gene-Based Machine Learning Classifier Associated to the Colorectal Adenoma—Carcinoma Sequence. Biomedicines, 9, Article 1937.
https://doi.org/10.3390/biomedicines9121937
[21]  Edgar, R. (2002) Gene Expression Omnibus: NCBI Gene Expression and Hybridization Array Data Repository. Nucleic Acids Research, 30, 207-210.
https://doi.org/10.1093/nar/30.1.207
[22]  Raghav, S., Suri, A., Kumar, D., Aakansha, A., Rathore, M. and Roy, S. (2024) A Hierarchical Clustering Approach for Colorectal Cancer Molecular Subtypes Identification from Gene Expression Data. Intelligent Medicine, 4, 43-51.
https://doi.org/10.1016/j.imed.2023.04.002
[23]  Chen, B., Chakrobortty, N., Saha, A.K. and Shang, X. (2023) Identifying Colon Cancer Stage Related Genes and Their Cellular Pathways. Frontiers in Genetics, 14, Article 1120185.
https://doi.org/10.3389/fgene.2023.1120185
[24]  Rohr, M., Beardsley, J., Nakkina, S.P., Zhu, X., Aljabban, J., Hadley, D., et al. (2021) A Merged Microarray Meta-Dataset for Transcriptionally Profiling Colorectal Neoplasm Formation and Progression. Scientific Data, 8, Article No. 214.
https://doi.org/10.1038/s41597-021-00998-5
[25]  Jason, B. (2021) Smote for Imbalanced Classification with Python.
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
[26]  Wah, Y.B., Ibrahim, N., Hamid, H.A., Abdul-Rahman, S. and Fong, S. (2018) Feature Selection Methods: Case of Filter and Wrapper Approaches for Maximising Classification Accuracy. Pertanika Journal of Science & Technology, 26, 329-340.
[27]  Wan, Y., Wang, M., Ye, Z. and Lai, X. (2016) A Feature Selection Method Based on Modified Binary Coded Ant Colony Optimization Algorithm. Applied Soft Computing, 49, 248-258.
https://doi.org/10.1016/j.asoc.2016.08.011
[28]  Kundu, R., Chattopadhyay, S., Cuevas, E. and Sarkar, R. (2022) Altwoa: Altruistic Whale Optimization Algorithm for Feature Selection on Microarray Datasets. Computers in Biology and Medicine, 144, 105349.
https://doi.org/10.1016/j.compbiomed.2022.105349
[29]  Mitchell, M. (1998) An Introduction to Genetic Algorithms. MIT Press.
[30]  Ho, T.K. (1995) Random Decision Forests. Proceedings of 3rd International Conference on Document Analysis and Recognition, Montreal, 14-16 August 1995, 278-282.
[31]  Amit, Y. and Geman, D. (1997) Shape Quantization and Recognition with Randomized Trees. Neural Computation, 9, 1545-1588.
https://doi.org/10.1162/neco.1997.9.7.1545
[32]  Breiman, L. (1996) Bagging Predictors. Machine Learning, 24, 123-140.
https://doi.org/10.1007/bf00058655
[33]  Azar, A.T., Elshazly, H.I., Hassanien, A.E. and Elkorany, A.M. (2014) A Random Forest Classifier for Lymph Diseases. Computer Methods and Programs in Biomedicine, 113, 465-473.
https://doi.org/10.1016/j.cmpb.2013.11.004
[34]  Ben-Hur, A., Ong, C.S., Sonnenburg, S., Schölkopf, B. and Rätsch, G. (2008) Support Vector Machines and Kernels for Computational Biology. PLOS Computational Biology, 4, e1000173.
https://doi.org/10.1371/journal.pcbi.1000173
[35]  Duan, K., Keerthi, S.S. and Poo, A.N. (2003) Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters. Neurocomputing, 51, 41-59.
https://doi.org/10.1016/s0925-2312(02)00601-x
[36]  Gunn, S.R., et al. (1998) Support Vector Machines for Classification and Regression. Analyst, 135, 230-67.
[37]  Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014) Grey Wolf Optimizer. Advances in Engineering Software, 69, 46-61.
https://doi.org/10.1016/j.advengsoft.2013.12.007
[38]  Powers, D.M. (2020) Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation. arXiv: 2010.16061.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133