Effect of Different Rates and Mixtures of Solid Household Waste and Faecal Sludge-Based Composts on Soil Fertility and Productivity of Sunflower (Helianthus annuus L.) in Dschang, West Cameroon
The unbalanced and inadequate use of fertilizers is one of the causes of soil degradation. Combined with the ever-increasing population, it is necessary to find sustainable agricultural production alternatives. The present work aims to determine the effect of different rates and mixtutes of organic amendments on soil fertility and the performance of Sunflower (Helianthus annuus L.). In the field, treatments consisted of solid household waste and faecal sludge in the ratios of 3/5 (V1), and a mixture of faecal sludge and household waste in the ratio of 3/5 with 900 worms (V2). At the end of the composting process, V1, V2 composts and the poultry manure (PM) were applied at rates of 4, 5 and 6 t?ha?1 in a randomized complete block design with three replications. Soil samples were collected before and after the experiment and analyzed. The main results revealed that at the end of the composting process, there was a progressive improvement in the physico-chemical properties of V1 and V2 composts. In particular, the C/N ratio, phosphorus (P) and total nitrogen (TN) initially at 16.49 ± 0.42 (V1, V2), 21.06 ± 0.07 mg?kg?1 (V1, V2), 0.76% ± 0.08% (V1, V2) respectively, increased after 60 days to 12.40 ± 0.41 (V1), 9.74 ± 0.28 (V2) for C/N, 21.94 ± 0.63 mg?kg?1 (V1) and 22.04 ± 0.04 mg?kg?1 (V2) for P, 0.96% ± 0.0% (V1) and 1.22 ± 0.04 (V2) for TN. The application of 6 t?ha?1of PM had the greatest influence on the diameter and weight of the flower heads (27.16 ± 4.01 t?ha?1 and 230.83 ± 2.64 t?ha?1), while 4 t?ha?1 of V2 gave the tallest sunflower plants (110.07 ± 73.28 cm) as well as the diameter at the crown (19.30 ± 9.07 cm). However, CEC was most influenced by 4 t?ha?1 of V1, while 4 t?ha?1 of PM had the greatest effect on organic carbon and phosphorus. However, 5 t?ha?1 of PM showed the highest sunflower production and yield (1.67 ± 0.21 t?ha?1). The combination with 900 earthworms is recommended for composting and 5 t?ha?1 of PM is recommended to obtain a better sunflower production.
References
[1]
AbdelRahman, M.A.E. (2023) An Overview of Land Degradation, Desertification and Sustainable Land Management Using GIS and Remote Sensing Applications. Rendiconti Lincei. Scienze Fisiche e Naturali, 34, 767-808. https://doi.org/10.1007/s12210-023-01155-3
[2]
Babu, S., Rana, D.S., Yadav, G.S., Singh, R. and Yadav, S.K. (2014) A Review on Recycling of Sunflower Residue for Sustaining Soil Health. International Journal of Agronomy, 2014, Article ID: 601049. https://doi.org/10.1155/2014/601049
[3]
Gilland, B. (2002) World Population and Food Supply: Can Food Production Keep Pace with Population Growth in the Next Half-Century? Food Policy, 27, 47-63. https://doi.org/10.1016/s0306-9192(02)00002-7
[4]
Hesselberg, J. (2017) How Can Poverty Be Reduced among Small-Scale Farmers in the Highlands of Western Cameroon? Ghana Journal of Geography, 9, 42-66.
[5]
Kouassi, Y.F., Gbogouri, A.G., N’guessan, K.A., Bilgo, A., Pascalangui, K.T. and Ama, T. (2019) Effets de fertilisants organique et organomineral à base de déchets végétaux et animaux sur la croissance et le rendement du soja (Glycine max (L.) Merrill) en zone de savane de Côte d’Ivoire. Agronomie Africaine, 31, 1-12.
[6]
Gong, Z., Li, P., Wilke, B.M. and Alef, K. (2008) Effects of Vegetable Oil Residue after Soil Extraction on Physical-Chemical Properties of Sandy Soil and Plant Growth. Journal of Environmental Sciences, 20, 1458-1462. https://doi.org/10.1016/s1001-0742(08)62549-8
[7]
Tan, Z.X., Lal, R. and Wiebe, K.D. (2005) Global Soil Nutrient Depletion and Yield Reduction. Journal of Sustainable Agriculture, 26, 123-146. https://doi.org/10.1300/j064v26n01_10
[8]
Jalali, M. (2009) Phosphorus Availability as Influenced by Organic Residues in Five Calcareous Soils. Compost Science & Utilization, 17, 241-246. https://doi.org/10.1080/1065657x.2009.10702430
[9]
Aowad, M.M. and Mohamed, A.A.A. (2009) The Effect of Bio, Organic and Mineral Fertilization on Productivity of Sunflower Seed and Oil Yields. Journal of Agricultural Research, 35, 1013-1027.
[10]
Azinwi Tamfuh, P., Tsozué, D., Tita, M.A., Boukong, A., Ngnipa Tchinda, R., Ntangmo Tsafack, H., et al. (2017) Effect of Topographic Position and Seasons on the Micronutrient Levels in Soils and Grown Huckleberry (Solanum scabrum) in Bafut (North-West Cameroon). World Journal of Agricultural Research, 5, 73-87. https://doi.org/10.12691/wjar-5-2-3
[11]
Akbari, P., Ghalavand, A., Modarres Sanavy, A.M. and Alikhani, A.M. (2011) The Effect of Biofertilizers, Nitrogen Fertilizer and Farmyard Manure on Grain Yield and Seed Quality of Sunflower (Helianthus annus L.). Journal of Agricultural Technology, 7, 173-184.
[12]
Kimuni, L.N., Mwali, M.K., Mulembo, T.M., Wa Lwalaba, J.L., Lubobo, A.K., Katombe, B.N., et al. (2014) Effets de doses croissantes des composts de fumiers de poules sur le rendement de chou de Chine (Brassica chinensis L.) installé sur un sol acide de Lubumbashi. Journal of Applied Biosciences, 77, 6509. https://doi.org/10.4314/jab.v77i1.4
[13]
Temgoua, E., Ntangmo Tsafack, H., Pfeifer, H.R. and Njine, T. (2015) Teneurs en éléments majeurs et oligoéléments dans un sol et quelques cultures maraîchères de la ville de Dschang, Cameroun. African Crop Science Journal, 23, 35-44.
[14]
Yerima, B.P.K., Tiamgne, A.Y. and Van Ranst, E. (2014) Réponse de deux variétés de tournesol (Helianthus sp.) à la fertilisation à base de fiente de poule sur un Hapli-Humic Ferralsol du Yongka Western Highlands Research Garden Park (YWHRGP) Nkwen-Bamenda, Cameroun, Afrique centrale. Tropicultura, 32, 168-176.
[15]
Temgoua, E., Ntangmo Tsafack, H., Azinwi Tamfuh, P. and Ndzana, G.M. (2023) Testing Soil Fertility, Potato (Solanum tuberosum) Production and Residual Effect on Green Beans (Phaseolus vulgaris) Performance Using Different Rates and Mixtures of Compost and Mineral Fertilizer. Journal of Plant Nutrition, 46, 4033-4043. https://doi.org/10.1080/01904167.2023.2220728
[16]
Kenne, R.E., Noubep, F.W., Azinwi, T.P., Lekemo, M.D., Kom, S.A., Enang, R.K., Ndzana, G.M., Ntangmo, T.H., Temgoua, E. and Bitom, D. (2023) Agronomic Value of Composts Made from Faecal Sludge and Household Waste and Effect on Maize Production in Dschang (West Cameroon). World Journal of Agricultural Research, 11, 72-82.
[17]
Figueiredo Lobo, T. and Grassi Filho, H. (2009) Sewage Sludge Levels on the Development and Nutrition of Sunflower Plants. Revista de la ciencia del suelo y nutrición vegetal, 9, 245-255. https://doi.org/10.4067/s0718-27912009000300007
[18]
Nouraein, M., Bakhtiarzadeh, R., Janmohammadi, M., Mohammadzadeh, M. and Sabaghnia, N. (2019) The Effects of Micronutrient and Organic Fertilizers on Yield and Growth Characteristics of Sunflower (Helianthus annuus L.). Helia, 42, 249-264. https://doi.org/10.1515/helia-2019-0015
[19]
Chander, A.M., Singh, N.K. and Venkateswaran, K. (2023) Microbial Technologies in Waste Management, Energy Generation and Climate Change: Implications on Earth and Space. Journal of the Indian Institute of Science, 103, 833-838.
[20]
Gupta, R. and Garg, V. (2008) Stabilization of Primary Sewage Sludge during Vermicomposting. Journal of Hazardous Materials, 153, 1023-1030. https://doi.org/10.1016/j.jhazmat.2007.09.055
[21]
Gurav, M.V. and Pathade, G.R. (2011) Production of Vermicompost from Temple Waste (Nirmalya): A Case Study. Universal Journal of Environmental Research and Technology, 1, 182-192.
[22]
Lee, L.H., Wu, T.Y., Shak, K.P.Y., Lim, S.L., Ng, K.Y., Nguyen, M.N., et al. (2018) Sustainable Approach to Biotransform Industrial Sludge into Organic Fertilizer via Vermicomposting: A Mini-Review. Journal of Chemical Technology & Biotechnology, 93, 925-935. https://doi.org/10.1002/jctb.5490
[23]
Negi, R. and Suthar, S. (2018) Degradation of Paper Mill Wastewater Sludge and Cow Dung by Brown-Rot Fungi Oligoporus Placenta and Earthworm (Eisenia fetida) during Vermicomposting. Journal of Cleaner Production, 201, 842-852. https://doi.org/10.1016/j.jclepro.2018.08.068
[24]
Yadav, A. and Garg, V.K. (2019) Biotransformation of Bakery Industry Sludge into Valuable Product Using Vermicomposting. Bioresource Technology, 274, 512-517. https://doi.org/10.1016/j.biortech.2018.12.023
[25]
Hui, X. and Kui, H. (2021) Effects of TiO2 and ZnO Nanoparticles on Vermicomposting of Dewatered Sludge: Studies Based on the Humification and Microbial Profiles of Vermicompost. Environmental Science and Pollution Research, 28, 38718-38729. https://doi.org/10.1007/s11356-021-13226-9
[26]
Li, W., Bhat, S.A., Li, J., Cui, G., Wei, Y., Yamada, T., et al. (2020) Effect of Excess Activated Sludge on Vermicomposting of Fruit and Vegetable Waste by Using Novel Vermireactor. Bioresource Technology, 302, Article ID: 122816. https://doi.org/10.1016/j.biortech.2020.122816
[27]
FAO (2022) The Importance of Ukraine and the Russian Federation for Global Agri-Cultural Markets and the Risks Associated with the War in Ukraine.
[28]
Radic, V. (2006) Effect of Maturation Period on Seed Quality; Optimum Time for Desiccation in Sunflower (Helianthus annuus L) Genotypes. Helia, 29, 145-152. https://doi.org/10.2298/hel0644145r
[29]
Abd El-Rahman, L., Sayed, D. and Ewais, M. (2016) Seed Yield and Quality of Sunflower (Helianthus annuus L.) as Influenced by Integrated Mineral and Organic Nitrogen Fertilization Systems. Journal of Soil Sciences and Agricultural Engineering, 7, 53-63. https://doi.org/10.21608/jssae.2016.39302
[30]
Azinwi, T.P., Ibrahim, B.A., Asafor, C.H., Cham, C.G., Wirba, N.L., Mfouapon. Y.H., Moundjeu, E.D., Kabeyene, K.V. and Bitom, D. (2022) Fertilizing Potential of Ba-Salt and Granite Fines for Vigna unguiculata Production and Residual Effect on Telfairia occidentalis Performance in the Cameroon Western Highlands: Fertilizing Potential of Basalt and Granite Fines. International Journal of Earth Sciences Knowledge and Applications, 4, 395-406.
[31]
Suthar, S., Sajwan, P. and Kumar, K. (2014) Vermiremediation of Heavy Metals in Wastewater Sludge from Paper and Pulp Industry Using Earthworm Eisenia fetida. Ecotoxicology and Environmental Safety, 109, 177-184. https://doi.org/10.1016/j.ecoenv.2014.07.030
[32]
Pauwels, J.M., Van Ranst, E., Verloo, M. and Mvondo Ze, A. (1992) Manuel de Laboratoire de Pédologie-Méthode d’analyse Des Sols et de Plantes; Équipements et Gestion Des Stocks de Verrerie et de Produits Chimiques. Public A.G.C.D.
[33]
Yulipriyanto, H. (2001) Emission d’effluents gazeux lors du compostage de substrats organiques en relation avec l’activité microbiologique (nitrification/dénitrification). Ingénierie de l’environnement. Université Rennes 1. Français. ffNNT: ff. fftel-00654701f.
[34]
Lim, S.L., Lee, L.H. and Wu, T.Y. (2016) Sustainability of Using Composting and Vermicomposting Technologies for Organic Solid Waste Biotransformation: Recent Overview, Greenhouse Gases Emissions and Economic Analysis. Journal of Cleaner Production, 111, 262-278. https://doi.org/10.1016/j.jclepro.2015.08.083
[35]
Villar, I., Alves, D., Pérez-Díaz, D. and Mato, S. (2016) Changes in Microbial Dynamics during Vermicomposting of Fresh and Composted Sewage Sludge. Waste Management, 48, 409-417. https://doi.org/10.1016/j.wasman.2015.10.011
[36]
Lv, B., Xing, M. and Yang, J. (2016) Speciation and Transformation of Heavy Metals during Vermicomposting of Animal Manure. Bioresource Technology, 209, 397-401. https://doi.org/10.1016/j.biortech.2016.03.015
[37]
Huang, K., Xia, H., Cui, G. and Li, F. (2017) Effects of Earthworms on Nitrification and Ammonia Oxidizers in Vermicomposting Systems for Recycling of Fruit and Vegetable Wastes. Science of the Total Environment, 578, 337-345. https://doi.org/10.1016/j.scitotenv.2016.10.172
[38]
Aira, M., Monroy, F. and Dominguez, J. (2007) Earthworms Strongly Modify Microbial Biomass and Activity Triggering Enzymatic Activities during Vermicomposting Independently of the Application Rates of Pig Slurry. Science of the Total Environment, 385, 252-261. https://doi.org/10.1016/j.scitotenv.2007.06.031
[39]
Francou, C., Linères, M., Derenne, S., Villio-Poitrenaud, M.L. and Houot, S. (2008) Influence of Green Waste, Biowaste and Paper-Cardboard Initial Ratios on Organic Matter Transformations during Composting. Bioresource Technology, 99, 8926-8934. https://doi.org/10.1016/j.biortech.2008.04.071
[40]
Guo, R., Li, G., Jiang, T., Schuchardt, F., Chen, T., Zhao, Y., et al. (2012) Effect of Aeration Rate, C/N Ratio and Moisture Content on the Stability and Maturity of Compost. Bioresource Technology, 112, 171-178. https://doi.org/10.1016/j.biortech.2012.02.099
[41]
Huang, G.F., Wu, Q.T., Wong, J.W.C. and Nagar, B.B. (2006) Transformation of Organic Matter during Co-Composting of Pig Manure with Sawdust. Bioresource Technology, 97, 1834-1842. https://doi.org/10.1016/j.biortech.2005.08.024
[42]
Jimenez, E.I., Garcia, V.P., Espino, M. and Moreno, J.M.H. (1993) City Refuse Compost as a Phosphorus Source to Overcome the P-Fixation Capacity of Sesquioxide-Rich Soils. Plant and Soil, 148, 115-127. https://doi.org/10.1007/bf02185391
[43]
Francou, C. (2003) Stabilisation de la matière organique au cours du compostage de déchets urbains: influence de la nature des déchets et du procédé de compostage-recherche d’indicateurs pertinents. Planète et Univers [physics]. INAPG (AgroParisTech). Thèse Doctorat, 290 p.
[44]
He, X., Zhang, Y., Shen, M., Zeng, G., Zhou, M. and Li, M. (2016) Effect of Vermicomposting on Concentration and Speciation of Heavy Metals in Sewage Sludge with Additive Materials. Bioresource Technology, 218, 867-873. https://doi.org/10.1016/j.biortech.2016.07.045
[45]
Suthar, S. (2009) Vermicomposting of Vegetable-Market Solid Waste Using Eisenia fetida: Impact of Bulking Material on Earthworm Growth and Decomposition Rate. Ecological Engineering, 35, 914-920. https://doi.org/10.1016/j.ecoleng.2008.12.019
[46]
Singh, J., Singh, S., Vig, A.P. and Kaur, A. (2018) Environmental Influence of Soil toward Effective Vermicomposting. In: Ray, S., Ed., Earthworms—The Ecological Engineers of Soil, InTech, 79-101. https://doi.org/10.5772/intechopen.75127
[47]
Ghosh, M., Chattopadhyay, G.N. and Baral, K. (1999) Transformation of Phosphorus during Vermicomposting. Bioresource Technology, 69, 149-154. https://doi.org/10.1016/s0960-8524(99)80001-7
[48]
Mehmood, A., Saleem, M.F., Tahir, M., Sarwar, M.A., Abbas, T., Zohaib, A., et al. (2018) Sunflower (Helianthus annuus L.) Growth, Yield and Oil Quality Response to Combined Application of Nitrogen and Boron. Pakistan Journal of Agricultural Research, 31, 86-97. https://doi.org/10.17582/journal.pjar/2018/31.1.86.97
[49]
Zraibi, L., Chaabane, K., Berrichi, A., Sbaa, M., Badaoui, M., Zarhloule, Y. and Georgiadis, M. (2015) Évaluation de la valeur agronomique du compost des boues de la station d’épuration des eaux usées de la ville de Nador. Journal of Materials and Environmental Science, 6, 2975-2985.
[50]
Boutmedjet, A., Boukaya, N., Houyou, Z., Ouakid, M.M. and Bielders, C. (2015) Étude des effets de l’application de boues d’épuration urbaines sur un sol érodé cultivé dans la région de Laghouat. Revue des Régions Arides-Numéro Spécial, 36, 235-246.
[51]
de Andrade, L.C., Andreazza, R. and de Oliveira Camargo, F.A. (2018) Cultivation of Sorghum and Sunflower in Soils with Amendment of Sludge from Industrial Landfill. International Journal of Recycling of Organic Waste in Agriculture, 8, 119-130. https://doi.org/10.1007/s40093-018-0236-4
[52]
Kaya, Y., Goksel, E., Durak, S., Pekcan, V. and Gucer, T. (2009) Yield Components Affecting Seed Yield and Their Relationships in Sunflower (Helianthus annuus L.). Pakistan Journal of Botany, 41, 2261-2269.
[53]
Ainika, J.N., Amans, E.B., Olonitola, O.C., Okutu, C.P. and Dodo, Y.E. (2012) Effect of Organic and Inorganic Fertilizer on Growth and Yield of Amaranthus caudatus L. in Northen Guinea Savanna of Nigeria. World Journal of Engineering and Pure Applied Science, 2, 26-30.
[54]
Khodaei-Joghan, A., Gholamhoseini, M., Agha-Alikhani, M., Habibzadeh, F., Sorooshzadeh, A. and Ghalavand, A. (2018) Response of Sunflower to Organic and Chemical Fertilizers in Different Drought Stress Conditions. Acta Agriculturae Slovenica, 111, 271-284. https://doi.org/10.14720/aas.2018.111.2.03
[55]
Lacerda, N., Altina, A.S., Regynaldo, F., Luiz, A.R., Zuba, J., Geraldo, C., João, P.N.R. and Márcio, C.A. (2013) Rendement et nutrition du tournesol fertilisé avec des boues d’épuration stabilisées par différents procédés. Ceres Magazine, 60, 683-689.
[56]
Sene, B., Sarr, F., Diouf, D., Kane, A. and Traore, D. (2018) Étude de la composition minérale et des teneurs en protéines et en matières grasses de huit variétés de sésame (Sesamum indicum L.) introduites au Sénégal pour un criblage variétal. OCL, 25, A601. https://doi.org/10.1051/ocl/2018045
[57]
Sene, B., Sarr, F., Sow, M.S., Diouf, D., Niang, M. and Traoré, D. (2017) Physi-Co-Chemical Composition of the Sesame Variety (Sesamum indicum L.) 32-15 and Characterization of Its Derived Products (Seeds, Oil and Oilcake) in Senegal. Food Science and Quality Management, 65, 5-10.
[58]
Castro, C., Oliveira, F.A., Veronesi, C.O. and Salinet, L.H. (2005) Dry Matter Accumulation, Export and Nutrient Cycling by Sunflower. In: Reunião Nacional de Pesquisa de Girassol, 16 Girassol, 16 Resumos, EMBRAPA, 29-31.
[59]
Vieira, R.F., Tanaka, R.T., Tsai, S.M., Pérez, D.V. and Silva, C.M.M.d.S. (2005) Disponibilidade de nutrientes no solo, qualidade de grãos e produtividade da soja em solo adubado com lodo de esgoto. Pesquisa Agropecuária Brasileira, 40, 919-926. https://doi.org/10.1590/s0100-204x2005000900012
[60]
Zamil, S.S., Quadir, F.Q., Chowdhury, M.A.H., et al. (2004) Effects of Different Animal Manures on Yield Quality and Nutrient Uptake by Mustard cv. Agrani. BRAC University Journal, 1, 2.
[61]
Yerima, B.P.K. and Van Ranst, E. (2005) Major Soil Classification Systems Used in the Tropics: Soils of Cameroon. Trafford Publishing.
[62]
Agbede, T.M., Ojeniyi, S.O. and Adeyemo, A.J. (2008) Effect of Poultry Manure on Soil Physical and Chemical Properties, Growth and Grain Yield of Sorghum in Southwest, Nigeria. American-Eurasian Journal of Sustainable Agriculture, 2, 72-77.