全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Obtaining 2D Soil Geotechnical Profiles from Cokriging Interpolation of Sample Data and Electrical Resistivity Tomography (ERT)—Applications in Mass Movements Studies

DOI: 10.4236/ijg.2024.157029, PP. 525-548

Keywords: Mass Movements, Geophysics, ERT, Geotechnical Surveys, Campos do Jord?o, Cokriging

Full-Text   Cite this paper   Add to My Lib

Abstract:

Brazil annually faces significant challenges with mass movements, particularly in areas with poorly constructed housing, inadequate engineering, and lacking sanitation infrastructure. Campos do Jord?o, in S?o Paulo state, is a city currently grappling with these issues. This paper details a study conducted within a pilot area in Campos do Jord?o, where geophysical surveys and geotechnical borehole data were integrated. The geophysical surveys provided 2D profiles, and samples were collected to analyse soil moisture and plasticity. These datasets were combined using a Cokriging-based model to produce an accurate representation of the subsurface conditions. The enhanced modelling of subsurface variability facilitates a deeper understanding of soil behavior, which can be used to improve landslide risk assessments. This approach is innovative, particularly within the international context where similar studies often do not address the complexities associated with urban planning deficits such as those observed in some areas of Brazil. These conditions, including the lack of proper sanitation and irregular housing, significantly influence the geological stability of the region, adding layers of complexity to subsurface assessments. Adapting geotechnical evaluation methods to local challenges offers the potential to increase the efficacy and relevance of geological risk management in regions with similar socio-economic and urban characteristics.

References

[1]  IPCC: Intergovernmental Panel on Climate Change (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[2]  de Souza, D.C., Crespo, N.M., da Silva, D.V., Harada, L.M., de Godoy, R.M.P., Domingues, L.M., et al. (2024) Extreme Rainfall and Landslides as a Response to Human-Induced Climate Change: A Case Study at Baixada Santista, Brazil, 2020. Natural Hazards.
https://doi.org/10.1007/s11069-024-06621-1
[3]  IBGE: Instituto Brasileiro de Geografia e Estatística (2014) AGÊNCIA IBGE NOTÍCIAS MUNIC 2013: Enchentes deixaram 1, 4 milhão de desabrigados ou desalojados entre 2008 e 2012.
https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/14601-asi-munic-2013-enchentes-deixaram-14-milhao-de-desabrigados-ou-desalojados-entre-2008-e-2012
[4]  UFSC-CEPED: Universidade Federal de Santa Catarina and Centro Universitário de Estudos e Pesquisas sobre Desastres (2012) Atlas brasileiro de desastres naturais 1991 a 2010: Volume Brasil.
[5]  OPAS (2014) Proteger a saúde frente à mudança climática: Avaliação da vulnerabilidade e adaptação.
[6]  Bini, L.M. and Azevedo, T.R. (2014) Vulnerabilidade socioambiental e risco de desastres em áreas de encosta: Análise do evento de 2011 na Região Serrana do Rio de Janeiro. Geografias, 10, 48-67.
[7]  Andrade, M.R.M.D., Bortolozo, C.A., Carvalho, A.R., Egas, H.M., Garcia, K., Metodiev, D., et al. (2023) The SNAKE System: Cemaden’s Landslide Early Warning System (LEWS) Mechanism. International Journal of Geosciences, 14, 1146-1159.
https://doi.org/10.4236/ijg.2023.1411058
[8]  Moraes, M.V.D., Pampuch, L.A., Bortolozo, C.A., Mendes, T.S.G., Andrade, M.R.M.D., Metodiev, D., et al. (2023) Thresholds of Instability: Precipitation, Landslides, and Early Warning Systems in Brazil. International Journal of Geosciences, 14, 895-912.
https://doi.org/10.4236/ijg.2023.1410048
[9]  Metodiev, D., Andrade, M.R.M.D., Mendes, R.M., Moraes, M.A.E.D., Konig, T., Bortolozo, C.A., et al. (2018) Correlation between Rainfall and Mass Movements in North Coast Region of Sao Paulo State, Brazil for 2014-2018. International Journal of Geosciences, 9, 669-679.
https://doi.org/10.4236/ijg.2018.912040
[10]  Bortolozo, C.A., Andrade, M.R.M., Mendes, R.M., Mendes, T.S.G., Motta, M.F.B., Lavalle, L.V.A., Simoes, S.J.C., Pampuch, L.A., Pryer, T., Legg, A., Ashby, B., Renk, J. and Metodiev, D. (2021) How DC and FDEM Methods Can Help Reconstruct the 90-Year History of Occupation of an Urban Area in Campos do Jordão, São Paulo-Brazil and Their Applications in Mass Movement Studies. AGU Fall Meeting 2021, New Orleans, 13-17 December 2021,1 p.
[11]  Bortolozo, C.A., Pampuch, L.A., Andrade, M.R.M.D., Metodiev, D., Carvalho, A.R., Mendes, T.S.G., et al. (2024) ARHCS (Automatic Rainfall Half-Life Cluster System): A Landslides Early Warning System (LEWS) Using Cluster Analysis and Automatic Threshold Definition. International Journal of Geosciences, 15, 54-69.
https://doi.org/10.4236/ijg.2024.151005
[12]  Sousa, I.A., Bortolozo, C.A., Gonçalves Mendes, T.S., de Andrade, M.R.M., Neto, G.D., Metodiev, D., et al. (2023) Development of a Soil Moisture Forecasting Method for a Landslide Early Warning System (LEWS): Pilot Cases in Coastal Regions of Brazil. Journal of South American Earth Sciences, 131, Article ID: 104631.
https://doi.org/10.1016/j.jsames.2023.104631
[13]  Bortolozo, C.A., Souza, I.A., Andrade, M.R.M., Mendes, T.S.G., Dolif, G., Pryer, T., Simões, S.J.C., Mendes, R.M. and Metodiev, D. (2022) The Development of a Landslide Alert System Based on the Prediction of Soil Moisture in Critical Cities in Brazil-Preliminary Results with the Cemaden’s Observation Network. The AGU 2022 Fall Meeting, Chicago, 12-16 December 2022, NH42C-0437.
[14]  Bortolozo, C.A., Mendes, T.S.G., Metodiev, D., Moraes, M.V.D., Egas, H.M., Andrade, M.R.M.D., et al. (2024) A Novel Simulator for Probing Water Infiltration in Rain-Triggered Landslides. First Break, 42, 37-43.
https://doi.org/10.3997/1365-2397.fb2024054
[15]  Bortolozo, C.A., Mendes, T.S.G., Egas, H.M., Metodiev, D., Moraes, M.V.D., Andrade, M.R.M.D., et al. (2023) Enhancing Landslide Predictability: Validating Geophysical Surveys for Soil Moisture Detection in 2D and 3D Scenarios. Journal of South American Earth Sciences, 132, Article ID: 104664.
https://doi.org/10.1016/j.jsames.2023.104664
[16]  Khan, M.A., Basharat, M., Riaz, M.T., Sarfraz, Y., Farooq, M., Khan, A.Y., et al. (2021) An Integrated Geotechnical and Geophysical Investigation of a Catastrophic Landslide in the Northeast Himalayas of Pakistan. Geological Journal, 56, 4760-4778.
https://doi.org/10.1002/gj.4209
[17]  Pasierb, B., Grodecki, M. and Gwóźdź, R. (2019) Geophysical and Geotechnical Approach to a Landslide Stability Assessment: A Case Study. Acta Geophysica, 67, 1823-1834.
https://doi.org/10.1007/s11600-019-00338-7
[18]  Mezerreg, N.E.H., Kessasra, F., Bouftouha, Y., Bouabdallah, H., Bollot, N., Baghdad, A., et al. (2019) Integrated Geotechnical and Geophysical Investigations in a Landslide Site at Jijel, Algeria. Journal of African Earth Sciences, 160, Article ID: 103633.
https://doi.org/10.1016/j.jafrearsci.2019.103633
[19]  Bortolozo, C.A., Motta, M.F.B., Andrade, M.R.M.D., Lavalle, L.V.A., Mendes, R.M., Simões, S.J.C., et al. (2019) Combined Analysis of Electrical and Electromagnetic Methods with Geotechnical Soundings and Soil Characterization as Applied to a Landslide Study in Campos Do Jordão City, Brazil. Journal of Applied Geophysics, 161, 1-14.
https://doi.org/10.1016/j.jappgeo.2018.11.017
[20]  Pouyon D.E., Ganno, S. and Tabod C.T. (2012) Geophysical and Geotechnical Investigations of a Landslide in Kekem Area, Western Cameroon. International Journal of Geosciences, 3, 780-789.
[21]  Bortolozo, C.A., Andrade, M.R.M., Mendes, T.S.G., Egas, H.M., Moraes, M.A.E., Pryer, T., Prieto, C.C., Metodiev, D., Simoes, S.J.C. and Mendes, R.M. (2022) The Tragedy of Morro do Centenário in Petrópolis-RJ, Brazil (February 15, 2022): Landslide Complexity Analyzed from a Multidisciplinary Perspective. The AGU 2022 Fall Meeting, Chicago, 12-16 December 2022, NH15B-07.
[22]  Bortolozo, C.A., Mendes, T.S.G., Motta, M.F.B., Simões, S.J.C., Pryer, T., Metodiev, D., et al. (2023) Obtaining 2D Soil Resistance Profiles from the Integration of Electrical Resistivity Data and Standard Penetration Test (SPT) and Light Dynamic Penetrometer (DPL) Resistance Tests—Applications in Mass Movements Studies. International Journal of Geosciences, 14, 840-854.
https://doi.org/10.4236/ijg.2023.149045
[23]  Bortolozo, C.A., Simões, S.J.C., Andrade, M.R.M., Mendes, R.M., Lavalle, L.V.A., Motta, M.F.B., Metodiev, D. and Mendes, T.S.G. (2019) Guara Registro de Software—Número do Pedido: BR 51 2019 002544-0. Revista da Propriedade Industrial, 2549, 15.
[24]  Siddiqui, F.I. and Osman, S.B.A.B.S. (2012) Simple and Multiple Regression Models for Relationship between Electrical Resistivity and Various Soil Properties for Soil Characterization. Environmental Earth Sciences, 70, 259-267.
https://doi.org/10.1007/s12665-012-2122-0
[25]  Braga, A.C.O. (2016) Geofísica aplicada: Métodos geoelétricos em hidrogeologia. Oficina de Textos.
[26]  Lavalle, L.V.A., Bortolozo, C.A., Moraes, M.A.E., Andrade, M.R.M., Motta, M.F.B., Carvalho, P.E.P. and Mendes, R.M. (2017) SOLAM. Registro de Software—Número do Pedido: BR 51 2017 001354-3. Revista da Propriedade Industrial, 2442, 18.
[27]  Brom, A. and Natonik, A. (2017) Estimation of Geotechnical Parameters on the Basis of Geophysical Methods and Geostatistics. Contemporary Trends in Geoscience, 6, 70-79.
https://doi.org/10.1515/ctg-2017-0006
[28]  Kay, M. and Dimitrakopoulos, R. (2000) Integrated Interpolation Methods for Geophysical Data: Applications to Mineral Exploration. Natural Resources Research, 9, 53-64.
https://doi.org/10.1023/a:1010161813931
[29]  Mendes, R.M., de Andrade, M.R.M., Tomasella, J., de Moraes, M.A.E. and Scofield, G.B. (2018) Understanding Shallow Landslides in Campos Do Jordão Municipality—Brazil: Disentangling the Anthropic Effects from Natural Causes in the Disaster of 2000. Natural Hazards and Earth System Sciences, 18, 15-30.
https://doi.org/10.5194/nhess-18-15-2018
[30]  Bortolozo, C.A., Mendes, T.S.G., Motta, M.F.B., Andrade, M.R.M., Lavalle, L.V.A., Mendes, R.M., Simoes, S.J.C. and Metodiev, D. (2021) Geofísica Aplicada em Estudos de Movimentos de Massa e Engenharia de Pequeno Porte. Boletim SBGf, 116, 14-17.
[31]  Moraes, M.A.E.D., Filho, W.M.M., Mendes, R.M., Bortolozo, C.A., Metodiev, D., Andrade, M.R.M.D., et al. (2024) Antecedent Precipitation Index to Estimate Soil Moisture and Correlate as a Triggering Process in the Occurrence of Landslides. International Journal of Geosciences, 15, 70-86.
https://doi.org/10.4236/ijg.2024.151006
[32]  Bortolozo, C.A., Lavalle, L.V.A., de Andrade, M.R.M., Motta, M.F.B., Mendes, R.M., Metodiev, D., et al. (2018) Geophysical Methods to Characterize a Mass Movement Event in Tropical Soils in Campos Do Jordão City, Brazil. First Break, 36, 71-73.
https://doi.org/10.3997/1365-2397.n0115
[33]  Lavalle, L.V.A., Bortolozo, C.A., Pacheco, T.C.K.F., de Andrade, M.R.M., Motta, M.F.B., Mendes, R.M., et al. (2018) Evaluation Methodology for Obtaining Geotechnical Parameters Using Electrical Resistivity. First Break, 36, 55-58.
https://doi.org/10.3997/1365-2397.n0112
[34]  Trouw, C.C., Medeiros, F.F.F.d. and Trouw, R.A.J. (2007) Evolução tectônica da Zona de Cisalhamento Caxambu, MG. Revista Brasileira de Geociências, 37, 767-776.
https://doi.org/10.25249/0375-7536.2007374767776
[35]  Almeida, F.F.M. (1976) The System of Continental Rifts Bordering the Santos Basin, Brazil. Anais Academia Brasileira de Ciências, 48, 15-26.
[36]  Serviço Geológico do Brasil (CPRM) (2007) Relatório Anual 2007.
https://rigeo.cprm.gov.br/jspui/handle/doc/14644
[37]  Ashby, B., Bortolozo, C., Lukyanov, A. and Pryer, T. (2021) Adaptive Modelling of Variably Saturated Seepage Problems. The Quarterly Journal of Mechanics and Applied Mathematics, 74, 55-81.
https://doi.org/10.1093/qjmam/hbab001
[38]  Leite, D.N., Bortolozo, C.A., Porsani, J.L., Couto, M.A., Campaña, J.D.R., dos Santos, F.A.M., et al. (2018) Geoelectrical Characterization with 1D VES/TDEM Joint Inversion in Urupês-Sp Region, Paraná Basin: Applications to Hydrogeology. Journal of Applied Geophysics, 151, 205-220.
https://doi.org/10.1016/j.jappgeo.2018.02.022
[39]  Hamada, L.R., Porsani, J.L., Bortolozo, C.A. and Rangel, R.C. (2018) TDEM and VES Soundings Applied to a Hydrogeological Study in the Central Region of the Taubaté Basin, Brazil. First Break, 36, 49-54.
https://doi.org/10.3997/1365-2397.n0111
[40]  Rangel, R.C., Porsani, J.L., Bortolozo, C.A. and Hamada, L.R. (2018) Electrical Resistivity Tomography and TDEM Applied to Hydrogeological Study in Taubaté Basin, Brazil. International Journal of Geosciences, 9, 119-130.
https://doi.org/10.4236/ijg.2018.92008
[41]  Bortolozo, C.A., Campaña, J.D.R., Junior, M.A.C., Porsani, J.L. and dos Santos, F.A.M. (2016) The Effects of Negative Values of Apparent Resistivity in TEM Surveys. International Journal of Geosciences, 7, 1182-1190.
https://doi.org/10.4236/ijg.2016.710088
[42]  Bortolozo, C.A., Couto, M.A., Porsani, J.L., Almeida, E.R. and Monteiro dos Santos, F.A. (2014) Geoelectrical Characterization Using Joint Inversion of VES/TEM Data: A Case Study in Paraná Sedimentary Basin, São Paulo State, Brazil. Journal of Applied Geophysics, 111, 33-46.
https://doi.org/10.1016/j.jappgeo.2014.09.009
[43]  Telford, W.M., Geldart, L.P. and Sheriff, R.E. (1990) Applied Geophysics. 2nd Edition, Cambridge University Press.
https://doi.org/10.1017/cbo9781139167932
[44]  Xavier, F.F. (2010) Geofísica Elétrica aplicada a Geotecnia para investigação de estabilidade de taludes. Tecgeofisica, Florianópolis, Santa Catarina, Brasil.
[45]  Godio, A. and Bottino, G. (2001) Electrical and Electromagnetic Investigation for Landslide Characterisation. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 26, 705-710.
https://doi.org/10.1016/s1464-1917(01)00070-8
[46]  Schmutz, M., Albouy, Y., Guérin, R., Maquaire, O., Vassal, J., Schott, J., et al. (2000) Joint Electrical and Time Domain Electromagnetism (TDEM) Data Inversion Applied to the Super Sauze Earthflow (France). Surveys in Geophysics, 21, 371-390.
https://doi.org/10.1023/a:1006741024983
[47]  Schmutz, M., Guérin, R., Andrieux, P. and Maquaire, O. (2009) Determination of the 3D Structure of an Earthflow by Geophysical Methods: The Case of Super Sauze, in the French Southern Alps. Journal of Applied Geophysics, 68, 500-507.
https://doi.org/10.1016/j.jappgeo.2008.12.004
[48]  Perrone, A., Lapenna, V. and Piscitelli, S. (2014) Electrical Resistivity Tomography Technique for Landslide Investigation: A Review. Earth-Science Reviews, 135, 65-82.
https://doi.org/10.1016/j.earscirev.2014.04.002
[49]  Koefoed, O. (1972) A Note on the Linear Filter Method of Interpreting Resistivity Sounding Data. Geophysical Prospecting, 20, 403-405.
https://doi.org/10.1111/j.1365-2478.1972.tb00643.x
[50]  Andrade, M.R.M., Bortolozo, C.A., Mendes, R.M., Metodiev, D., Moraes, M.A.E., Renk, J., Mendes, T.S.G. and Simoes, S.J.C. (2021) Challenges in Implementing a landslide Warning System Based on Soil Moisture Sensors in a Continental-Sized Country Like Brazil-Preliminary Results. AGU Fall Meeting 2021, New Orleans, 13-17 December 2021, 1 p.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133