|
关于求解矩阵方程AXB = C的广义Richardson迭代及其收敛性
|
Abstract:
本文研究了对于方程AXB = C在传统的Richardson方法基础上,与外推法结合得到的广义Richardson迭代方法。首先,提出广义Richardson迭代方法,然后证明其收敛性。最后,通过数值实验,验证了该迭代方法比传统的渐进迭代逼近法方法(PIA)更有效。
This paper investigates the generalized Richardson iterative method for solving the matrix equation AXB = C, which combines extrapolation with the traditional Richardson method. Initially, the generalized Richardson iterative method is proposed, followed by the proof of its convergence. Finally, through numerical experiments, it is verified that this iterative method is more effective than the traditional Progressive Iterative Approximation (PIA) approach.
[1] | Peng, Z. (2005) An Iterative Method for the Least Squares Symmetric Solution of the Linear Matrix Equation AXB = C. Applied Mathematics and Computation, 170, 711-723. https://doi.org/10.1016/j.amc.2004.12.032 |
[2] | Peng, Y., Hu, X. and Zhang, L. (2005) An Iteration Method for the Symmetric Solutions and the Optimal Approximation Solution of the Matrix Equation AXB = C. Applied Mathematics and Computation, 160, 763-777. https://doi.org/10.1016/j.amc.2003.11.030 |
[3] | Huang, G., Yin, F. and Guo, K. (2008) An Iterative Method for the Skew-Symmetic Solution and the Optimal Approximate Solution of the Matrix Equation AXB = C. Journal of Computational and Applied Mathematics, 212, 231-244. https://doi.org/10.1016/j.cam.2006.12.005 |
[4] | Tian, Z., Tian, M., Liu, Z. and Xu, T. (2017) The Jacobi and Gauss-Seidel-Type Iteration Methods for the Matrix Equation AXB = C. Applied Mathematics and Computation, 292, 63-75. https://doi.org/10.1016/j.amc.2016.07.026 |
[5] | 蔺宏伟. 几何迭代法及其应用综述[J]. 计算机辅助设计与图形学学报, 2015, 27(4): 582-589. |
[6] | 刘成志, 韩旭里, 李军成. 三次均匀B样条扩展曲线的渐进迭代逼近法[J]. 计算机辅助设计与图形学学报, 2019, 31(6): 899-910. |