全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

术中分子病理指导下的脑胶质瘤诊疗进展
Advances in Intraoperative Molecular Pathology-Guided Diagnosis and Treatment of Gliomas

DOI: 10.12677/acm.2024.1472065, PP. 661-672

Keywords: 脑胶质瘤,IDH突变,TERTp突变,切除范围,肿瘤边界
Glioma
, IDH Mutation, TERTp Mutation, Extent of Resection, Tumor Margins

Full-Text   Cite this paper   Add to My Lib

Abstract:

胶质瘤是最常见的恶性脑肿瘤,具有恶性程度高、手术切除困难、术后易复发等特点。随着脑胶质瘤诊疗分子时代的来临,单一的术中组织病理检查已不能满足手术的需求。术中快速获取患者分子突变信息将为胶质瘤的精准分型诊断、指导手术切除及术后辅助治疗提供新的依据。本文对近十年已发表的术中快速分子诊断技术应用于脑胶质瘤的相关研究进行了回顾和梳理,探讨了分子病理指导下成人弥漫性胶质瘤不同分子亚型患者的诊疗特点,并总结了术中辅助识别胶质瘤边界的相关技术,最后对分子病理指导脑胶质瘤切除的应用前景加以展望。
Glioma is the most common intracranial malignant tumor and is recognized as being one of the most difficult tumors to treat because of the difficulty of complete surgical removal and the poor effectiveness of post-operative radiotherapy. With the advent of the molecular era in the diagnosis and treatment of gliomas, a single histopathological examination is no longer sufficient for surgery. The detection of molecular mutation information in patients intraoperatively will provide a new basis for accurate staging and diagnosis of gliomas, guiding surgical resection and postoperative adjuvant therapy. In this paper, we review the published studies on the application of intraoperative rapid molecular diagnosis to glioma in the past decade, summarize the characteristics of the treatment of patients with different glioma subtypes under the guidance of molecular pathology, and finally look forward to the application of molecular pathology to guide the resection of glioma.

References

[1]  Weller, M., Wick, W., Aldape, K., Brada, M., Berger, M., Pfister, S.M., et al. (2015) Glioma. Nature Reviews Disease Primers, 1, Article No. 15017.
https://doi.org/10.1038/nrdp.2015.17
[2]  Tang, Z., Dokic, I., Knoll, M., Ciamarone, F., Schwager, C., Klein, C., et al. (2022) Radioresistance and Transcriptional Reprograming of Invasive Glioblastoma Cells. International Journal of Radiation OncologyBiology?Physics, 112, 499-513.
https://doi.org/10.1016/j.ijrobp.2021.09.017
[3]  LeBlanc, V.G., Trinh, D.L., Aslanpour, S., Hughes, M., Livingstone, D., Jin, D., et al. (2022) Single-Cell Landscapes of Primary Glioblastomas and Matched Explants and Cell Lines Show Variable Retention of Inter-and Intratumor Heterogeneity. Cancer Cell, 40, 379-392.E9.
https://doi.org/10.1016/j.ccell.2022.02.016
[4]  Qazi, M.A., Vora, P., Venugopal, C., Sidhu, S.S., Moffat, J., Swanton, C., et al. (2017) Intratumoral Heterogeneity: Pathways to Treatment Resistance and Relapse in Human Glioblastoma. Annals of Oncology, 28, 1448-1456.
https://doi.org/10.1093/annonc/mdx169
[5]  Gao, Z., Xu, J., Fan, Y., Zhang, Z., Wang, H., Qian, M., et al. (2022) ARPC1B Promotes Mesenchymal Phenotype Maintenance and Radiotherapy Resistance by Blocking TRIM21-Mediated Degradation of IFI16 and HuR in Glioma Stem Cells. Journal of Experimental & Clinical Cancer Research, 41, Article No. 323.
https://doi.org/10.1186/s13046-022-02526-8
[6]  Wang, L., Jung, J., Babikir, H., Shamardani, K., Jain, S., Feng, X., et al. (2022) A Single-Cell Atlas of Glioblastoma Evolution under Therapy Reveals Cell-Intrinsic and Cell-Extrinsic Therapeutic Targets. Nature Cancer, 3, 1534-1552.
https://doi.org/10.1038/s43018-022-00475-x
[7]  Brown, T.J., Brennan, M.C., Li, M., Church, E.W., Brandmeir, N.J., Rakszawski, K.L., et al. (2016) Association of the Extent of Resection with Survival in Glioblastoma. JAMA Oncology, 2, 1460-1469.
https://doi.org/10.1001/jamaoncol.2016.1373
[8]  Tang, S., Liao, J. and Long, Y. (2019) Comparative Assessment of the Efficacy of Gross Total versus Subtotal Total Resection in Patients with Glioma: A Meta-Analysis. International Journal of Surgery, 63, 90-97.
https://doi.org/10.1016/j.ijsu.2019.02.004
[9]  Lemaitre, A., Herbet, G., Ng, S., Moritz-Gasser, S. and Duffau, H. (2021) Cognitive Preservation Following Awake Mapping-Based Neurosurgery for Low-Grade Gliomas: A Longitudinal, Within-Patient Design Study. Neuro-Oncology, 24, 781-793.
https://doi.org/10.1093/neuonc/noab275
[10]  Chaichana, K.L., Jusue-Torres, I., Navarro-Ramirez, R., Raza, S.M., Pascual-Gallego, M., Ibrahim, A., et al. (2013) Establishing Percent Resection and Residual Volume Thresholds Affecting Survival and Recurrence for Patients with Newly Diagnosed Intracranial Glioblastoma. Neuro-Oncology, 16, 113-122.
https://doi.org/10.1093/neuonc/not137
[11]  Kurokawa, R., Kurokawa, M., Baba, A., Ota, Y., Pinarbasi, E., Camelo-Piragua, S., et al. (2022) Major Changes in 2021 World Health Organization Classification of Central Nervous System Tumors. RadioGraphics, 42, 1474-1493.
https://doi.org/10.1148/rg.210236
[12]  Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, I.A., Figarella-Branger, D., et al. (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology, 23, 1231-1251.
https://doi.org/10.1093/neuonc/noab106
[13]  Horbinski, C., Berger, T., Packer, R.J. and Wen, P.Y. (2022) Clinical Implications of the 2021 Edition of the WHO Classification of Central Nervous System Tumours. Nature Reviews Neurology, 18, 515-529.
https://doi.org/10.1038/s41582-022-00679-w
[14]  Zakharova, G., Efimov, V., Raevskiy, M., Rumiantsev, P., Gudkov, A., Belogurova-Ovchinnikova, O., et al. (2022) Reclassification of TCGA Diffuse Glioma Profiles Linked to Transcriptomic, Epigenetic, Genomic and Clinical Data, According to the 2021 WHO CNS Tumor Classification. International Journal of Molecular Sciences, 24, Article 157.
https://doi.org/10.3390/ijms24010157
[15]  Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J.B., et al. (2005) Radiotherapy Plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352, 987-996.
https://doi.org/10.1056/nejmoa043330
[16]  Franceschi, E., Tosoni, A., Bartolini, S., Minichillo, S., Mura, A., Asioli, S., et al. (2020) Histopathological Grading Affects Survival in Patients with IDH-Mutant Grade II and Grade III Diffuse Gliomas. European Journal of Cancer, 137, 10-17.
https://doi.org/10.1016/j.ejca.2020.06.018
[17]  Ardon, H., Van Gool, S., Lopes, I.S., Maes, W., Sciot, R., Wilms, G., et al. (2010) Integration of Autologous Dendritic Cell-Based Immunotherapy in the Primary Treatment for Patients with Newly Diagnosed Glioblastoma Multiforme: A Pilot Study. Journal of Neuro-Oncology, 99, 261-272.
https://doi.org/10.1007/s11060-010-0131-y
[18]  Omuro, A. (2013) Glioblastoma and Other Malignant Gliomas. JAMA, 310, 1842-1850.
https://doi.org/10.1001/jama.2013.280319
[19]  Yang, K., Wu, Z., Zhang, H., Zhang, N., Wu, W., Wang, Z., et al. (2022) Glioma Targeted Therapy: Insight into Future of Molecular Approaches. Molecular Cancer, 21, Article No. 39.
https://doi.org/10.1186/s12943-022-01513-z
[20]  Stupp, R., Taillibert, S., Kanner, A., Read, W., Steinberg, D.M., Lhermitte, B., et al. (2017) Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients with Glioblastoma. JAMA, 318, 2306-2316.
https://doi.org/10.1001/jama.2017.18718
[21]  Marko, N.F., Weil, R.J., Schroeder, J.L., Lang, F.F., Suki, D. and Sawaya, R.E. (2014) Extent of Resection of Glioblastoma Revisited: Personalized Survival Modeling Facilitates More Accurate Survival Prediction and Supports a Maximum-Safe-Resection Approach to Surgery. Journal of Clinical Oncology, 32, 774-782.
https://doi.org/10.1200/jco.2013.51.8886
[22]  Sanai, N., Polley, M., McDermott, M.W., Parsa, A.T. and Berger, M.S. (2011) An Extent of Resection Threshold for Newly Diagnosed Glioblastomas. Journal of Neurosurgery, 115, 3-8.
https://doi.org/10.3171/2011.2.jns10998
[23]  Napolitano, M., Vaz, G., Lawson, T.M., Docquier, M.-A., van Maanen, A., Duprez, T., et al. (2014) Glioblastoma Surgery with and without Intraoperative MRI at 3.0T. Neurochirurgie, 60, 143-150.
https://doi.org/10.1016/j.neuchi.2014.03.010
[24]  Cordova, J.S., Gurbani, S.S., Holder, C.A., Olson, J.J., Schreibmann, E., Shi, R., et al. (2015) Semi-Automated Volumetric and Morphological Assessment of Glioblastoma Resection with Fluorescence-Guided Surgery. Molecular Imaging and Biology, 18, 454-462.
https://doi.org/10.1007/s11307-015-0900-2
[25]  B?, H.K., Solheim, O., Kvistad, K., Berntsen, E.M., Torp, S.H., Skjulsvik, A.J., et al. (2020) Intraoperative 3D Ultrasound-Guided Resection of Diffuse Low-Grade Gliomas: Radiological and Clinical Results. Journal of Neurosurgery, 132, 518-529.
https://doi.org/10.3171/2018.10.jns181290
[26]  Pan, S., Chen, J., Cheng, W., Lee, H. and Shen, C. (2020) The Role of Tailored Intraoperative Neurophysiological Monitoring in Glioma Surgery: A Single Institute Experience. Journal of Neuro-Oncology, 146, 459-467.
https://doi.org/10.1007/s11060-019-03347-0
[27]  Lapointe, S., Perry, A. and Butowski, N.A. (2018) Primary Brain Tumours in Adults. The Lancet, 392, 432-446.
https://doi.org/10.1016/s0140-6736(18)30990-5
[28]  Eckel-Passow, J.E., Lachance, D.H., Molinaro, A.M., Walsh, K.M., Decker, P.A., Sicotte, H., et al. (2015) Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. New England Journal of Medicine, 372, 2499-2508.
https://doi.org/10.1056/nejmoa1407279
[29]  Wick, W., Weller, M., van den Bent, M., Sanson, M., Weiler, M., von Deimling, A., et al. (2014) MGMT Testing—The Challenges for Biomarker-Based Glioma Treatment. Nature Reviews Neurology, 10, 372-385.
https://doi.org/10.1038/nrneurol.2014.100
[30]  Kanamori, M., Maekawa, M., Shibahara, I., Saito, R., Chonan, M., Shimada, M., et al. (2018) Rapid Detection of Mutation in Isocitrate Dehydrogenase 1 and 2 Genes Using Mass Spectrometry. Brain Tumor Pathology, 35, 90-96.
https://doi.org/10.1007/s10014-018-0317-0
[31]  Xu, H., Xia, Y., Li, C., Zhang, J., Liu, Y., Yi, W., et al. (2019) Rapid Diagnosis of IDH1-Mutated Gliomas by 2-HG Detection with Gas Chromatography Mass Spectrometry. Laboratory Investigation, 99, 588-598.
https://doi.org/10.1038/s41374-018-0163-z
[32]  Alfaro, C.M., Pirro, V., Keating, M.F., Hattab, E.M., Cooks, R.G. and Cohen-Gadol, A.A. (2020) Intraoperative Assessment of Isocitrate Dehydrogenase Mutation Status in Human Gliomas Using Desorption Electrospray Ionization-Mass Spectrometry. Journal of Neurosurgery, 132, 180-187.
https://doi.org/10.3171/2018.8.jns181207
[33]  Santagata, S., Eberlin, L.S., Norton, I., Calligaris, D., Feldman, D.R., Ide, J.L., et al. (2014) Intraoperative Mass Spectrometry Mapping of an Onco-Metabolite to Guide Brain Tumor Surgery. Proceedings of the National Academy of Sciences, 111, 11121-11126.
https://doi.org/10.1073/pnas.1404724111
[34]  Lan, C., Li, H., Wang, L., Zhang, J., Wang, X., Zhang, R., et al. (2021) Absolute Quantification of 2‐Hydroxyglutarate on Tissue by Matrix‐Assisted Laser Desorption/Ionization Mass Spectrometry Imaging for Rapid and Precise Identification of Isocitrate Dehydrogenase Mutations in Human Glioma. International Journal of Cancer, 149, 2091-2098.
https://doi.org/10.1002/ijc.33729
[35]  Avsar, T., Sursal, A., Turan, G., Yigit, B.N., Altunsu, D., Cantasir, K., et al. (2020) Development of a Rapid and Sensitive IDH1/2 Mutation Detection Method for Glial Tumors and a Comparative Mutation Analysis of 236 Glial Tumor Samples. Molecular Diagnosis & Therapy, 24, 327-338.
https://doi.org/10.1007/s40291-020-00461-y
[36]  Xue, H., Han, Z., Li, H., Li, X., Jia, D., Qi, M., et al. (2022) Application of Intraoperative Rapid Molecular Diagnosis in Precision Surgery for Glioma: Mimic the World Health Organization CNS5 Integrated Diagnosis. Neurosurgery, 92, 762-771.
https://doi.org/10.1227/neu.0000000000002260
[37]  Shankar, G.M., Francis, J.M., Rinne, M.L., Ramkissoon, S.H., Huang, F.W., Venteicher, A.S., et al. (2015) Rapid Intraoperative Molecular Characterization of Glioma. JAMA Oncology, 1, 662-667.
https://doi.org/10.1001/jamaoncol.2015.0917
[38]  Diplas, B.H., Liu, H., Yang, R., Hansen, L.J., Zachem, A.L., Zhao, F., et al. (2018) Sensitive and Rapid Detection of TERT Promoter and IDH Mutations in Diffuse Gliomas. Neuro-Oncology, 21, 440-450.
https://doi.org/10.1093/neuonc/noy167
[39]  Kanamori, M., Kikuchi, A., Watanabe, M., Shibahara, I., Saito, R., Yamashita, Y., et al. (2014) Rapid and Sensitive Intraoperative Detection of Mutations in the Isocitrate Dehydrogenase 1 and 2 Genes during Surgery for Glioma. Journal of Neurosurgery, 120, 1288-1297.
https://doi.org/10.3171/2014.3.jns131505
[40]  Domon, B. and Aebersold, R. (2006) Mass Spectrometry and Protein Analysis. Science, 312, 212-217.
https://doi.org/10.1126/science.1124619
[41]  Xu, W., Yang, H., Liu, Y., Yang, Y., Wang, P., Kim, S., et al. (2011) Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of Α-Ketoglutarate-Dependent Dioxygenases. Cancer Cell, 19, 17-30.
https://doi.org/10.1016/j.ccr.2010.12.014
[42]  Chou, F., Liu, Y., Lang, F. and Yang, C. (2021) D-2-Hydroxyglutarate in Glioma Biology. Cells, 10, Article 2345.
https://doi.org/10.3390/cells10092345
[43]  Li, J., Wang, L., Mamon, H., Kulke, M.H., Berbeco, R. and Makrigiorgos, G.M. (2008) Replacing PCR with COLD-PCR Enriches Variant DNA Sequences and Redefines the Sensitivity of Genetic Testing. Nature Medicine, 14, 579-584.
https://doi.org/10.1038/nm1708
[44]  Boisselier, B., Marie, Y., Labussière, M., Ciccarino, P., Desestret, V., Wang, X., et al. (2010) COLD PCR HRM: A Highly Sensitive Detection Method for IDH1 Mutations. Human Mutation, 31, 1360-1365.
https://doi.org/10.1002/humu.21365
[45]  McNeill, R.S., Vitucci, M., Wu, J. and Miller, C.R. (2014) Contemporary Murine Models in Preclinical Astrocytoma Drug Development. Neuro-Oncology, 17, 12-28.
https://doi.org/10.1093/neuonc/nou288
[46]  Barzilai, O., Moshe, S.B., Sitt, R., et al. (2018) Improvement in Cognitive Function after Surgery for Low-Grade Glioma. Journal of Neurosurgery, 130, 426-434.
https://doi.org/10.3171/2017.9.JNS17658
[47]  Hervey-Jumper, S.L., Zhang, Y., Phillips, J.J., Morshed, R.A., Young, J.S., McCoy, L., et al. (2023) Interactive Effects of Molecular, Therapeutic, and Patient Factors on Outcome of Diffuse Low-Grade Glioma. Journal of Clinical Oncology, 41, 2029-2042.
https://doi.org/10.1200/jco.21.02929
[48]  Rossi, M., Gay, L., Ambrogi, F., Conti Nibali, M., Sciortino, T., Puglisi, G., et al. (2020) Association of Supratotal Resection with Progression-Free Survival, Malignant Transformation, and Overall Survival in Lower-Grade Gliomas. Neuro-Oncology, 23, 812-826.
https://doi.org/10.1093/neuonc/noaa225
[49]  Pessina, F., Navarria, P., Cozzi, L., Ascolese, A.M., Simonelli, M., Santoro, A., et al. (2016) Value of Surgical Resection in Patients with Newly Diagnosed Grade III Glioma Treated in a Multimodal Approach: Surgery, Chemotherapy and Radiotherapy. Annals of Surgical Oncology, 23, 3040-3046.
https://doi.org/10.1245/s10434-016-5222-3
[50]  Prabhu, R.S., Won, M., Shaw, E.G., et al. (2014) Effect of the Addition of Chemotherapy to Radiotherapy on Cognitive Function in Patients with Low-Grade Glioma: Secondary Analysis of RTOG 98-02. Journal of Clinical Oncology, 32, 535-541.
https://doi.org/10.1200/JCO.2013.53.1830
[51]  Shaw, E.G., Wang, M., Coons, S.W., Brachman, D.G., Buckner, J.C., Stelzer, K.J., et al. (2012) Randomized Trial of Radiation Therapy Plus Procarbazine, Lomustine, and Vincristine Chemotherapy for Supratentorial Adult Low-Grade Glioma: Initial Results of RTOG 9802. Journal of Clinical Oncology, 30, 3065-3070.
https://doi.org/10.1200/jco.2011.35.8598
[52]  Wesseling, P., van den Bent, M. and Perry, A. (2015) Oligodendroglioma: Pathology, Molecular Mechanisms and Markers. Acta Neuropathologica, 129, 809-827.
https://doi.org/10.1007/s00401-015-1424-1
[53]  Alattar, A.A., Brandel, M.G., Hirshman, B.R., Dong, X., Carroll, K.T., Ali, M.A., et al. (2018) Oligodendroglioma Resection: A Surveillance, Epidemiology, and End Results (SEER) Analysis. Journal of Neurosurgery, 128, 1076-1083.
https://doi.org/10.3171/2016.11.jns161974
[54]  Garton, A.L.A., Kinslow, C.J., Rae, A.I., Mehta, A., Pannullo, S.C., Magge, R.S., et al. (2021) Extent of Resection, Molecular Signature, and Survival in 1p19q-Codeleted Gliomas. Journal of Neurosurgery, 134, 1357-1367.
https://doi.org/10.3171/2020.2.jns192767
[55]  Cairncross, G., Wang, M., Shaw, E., Jenkins, R., Brachman, D., Buckner, J., et al. (2013) Phase III Trial of Chemoradiotherapy for Anaplastic Oligodendroglioma: Long-Term Results of RTOG 9402. Journal of Clinical Oncology, 31, 337-343.
https://doi.org/10.1200/jco.2012.43.2674
[56]  Molinaro, A.M., Hervey-Jumper, S., Morshed, R.A., Young, J., Han, S.J., Chunduru, P., et al. (2020) Association of Maximal Extent of Resection of Contrast-Enhanced and Non-Contrast-Enhanced Tumor with Survival within Molecular Subgroups of Patients with Newly Diagnosed Glioblastoma. JAMA Oncology, 6, 495-503.
https://doi.org/10.1001/jamaoncol.2019.6143
[57]  Zigiotto, L., Annicchiarico, L., Corsini, F., Vitali, L., Falchi, R., Dalpiaz, C., et al. (2020) Effects of Supra-Total Resection in Neurocognitive and Oncological Outcome of High-Grade Gliomas Comparing Asleep and Awake Surgery. Journal of Neuro-Oncology, 148, 97-108.
https://doi.org/10.1007/s11060-020-03494-9
[58]  Hathout, L., Ellingson, B. and Pope, W. (2016) Modeling the Efficacy of the Extent of Surgical Resection in the Setting of Radiation Therapy for Glioblastoma. Cancer Science, 107, 1110-1116.
https://doi.org/10.1111/cas.12979
[59]  Knauth, M., Wirtz, C.R., Tronnier, V.M., et al. (1999) Intraoperative MR Imaging Increases the Extent of Tumor Resection in Patients with High-Grade Gliomas. American Journal of Neuroradiology, 20, 1642-1646.
[60]  Kuhnt, D., Becker, A., Ganslandt, O., Bauer, M., Buchfelder, M. and Nimsky, C. (2011) Correlation of the Extent of Tumor Volume Resection and Patient Survival in Surgery of Glioblastoma Multiforme with High-Field Intraoperative MRI Guidance. Neuro-Oncology, 13, 1339-1348.
https://doi.org/10.1093/neuonc/nor133
[61]  Nickel, K., Renovanz, M., K?nig, J., St?ckelmaier, L., Hickmann, A., Nadji-Ohl, M., et al. (2017) The Patients’ View: Impact of the Extent of Resection, Intraoperative Imaging, and Awake Surgery on Health-Related Quality of Life in High-Grade Glioma Patients—Results of a Multicenter Cross-Sectional Study. Neurosurgical Review, 41, 207-219.
https://doi.org/10.1007/s10143-017-0836-x
[62]  Prada, F., Ciocca, R., Corradino, N., Gionso, M., Raspagliesi, L., Vetrano, I.G., et al. (2022) Multiparametric Intraoperative Ultrasound in Oncological Neurosurgery: A Pictorial Essay. Frontiers in Neuroscience, 16, Article 881661.
https://doi.org/10.3389/fnins.2022.881661
[63]  Wang, J., Liu, X., Hou, W., Dong, G., Wei, Z., Zhou, H., et al. (2008) The Relationship between Intra-Operative Ultrasonography and Pathological Grade in Cerebral Glioma. Journal of International Medical Research, 36, 1426-1434.
https://doi.org/10.1177/147323000803600632
[64]  Li, Z., Song, Y., Farrukh Hameed, N.U., Yuan, S., Wu, S., Gong, X., et al. (2024) Effect of High-Field iMRI Guided Resection in Cerebral Glioma Surgery: A Randomized Clinical Trial. European Journal of Cancer, 199, Article 113528.
https://doi.org/10.1016/j.ejca.2024.113528
[65]  Bello, L., Riva, M., Fava, E., Ferpozzi, V., Castellano, A., Raneri, F., et al. (2014) Tailoring Neurophysiological Strategies with Clinical Context Enhances Resection and Safety and Expands Indications in Gliomas Involving Motor Pathways. Neuro-Oncology, 16, 1110-1128.
https://doi.org/10.1093/neuonc/not327
[66]  Clavreul, A., Aubin, G., Delion, M., Lemée, J., Ter Minassian, A. and Menei, P. (2021) What Effects Does Awake Craniotomy Have on Functional and Survival Outcomes for Glioblastoma Patients? Journal of Neuro-Oncology, 151, 113-121.
https://doi.org/10.1007/s11060-020-03666-7
[67]  Gerritsen, J.K.W., Vi?tor, C.L., Rizopoulos, D., Schouten, J.W., Klimek, M., Dirven, C.M.F., et al. (2019) Awake Craniotomy versus Craniotomy under General Anesthesia without Surgery Adjuncts for Supratentorial Glioblastoma in Eloquent Areas: A Retrospective Matched Case-Control Study. Acta Neurochirurgica, 161, 307-315.
https://doi.org/10.1007/s00701-018-03788-y
[68]  Musca, B., Bonaudo, C., Tushe, A., et al. (2023) Sodium Fluorescein Uptake by the Tumor Microenvironment in Human Gliomas and Brain Metastases. Journal of Neurosurgery, 140, 958-967.
https://doi.org/10.3171/2023.7.JNS23873
[69]  Moore, G.E., Peyton, W.T., French, L.A. and Walker, W.W. (1948) The Clinical Use of Fluorescein in Neurosurgery. Journal of Neurosurgery, 5, 392-398.
https://doi.org/10.3171/jns.1948.5.4.0392
[70]  Murray, K.J. (1982) Improved Surgical Resection of Human Brain Tumors: Part 1. A Preliminary Study. Surgical Neurology, 17, 316-319.
https://doi.org/10.1016/0090-3019(82)90298-1
[71]  Díez Valle, R., Tejada Solis, S., Idoate Gastearena, M.A., García de Eulate, R., Domínguez Echávarri, P. and Aristu Mendiroz, J. (2010) Surgery Guided by 5-Aminolevulinic Fluorescence in Glioblastoma: Volumetric Analysis of Extent of Resection in Single-Center Experience. Journal of Neuro-Oncology, 102, 105-113.
https://doi.org/10.1007/s11060-010-0296-4
[72]  Katsevman, G.A., Turner, R.C., Urhie, O., Voelker, J.L. and Bhatia, S. (2020) Utility of Sodium Fluorescein for Achieving Resection Targets in Glioblastoma: Increased Gross-or Near-Total Resections and Prolonged Survival. Journal of Neurosurgery, 132, 914-920.
https://doi.org/10.3171/2018.10.jns181174
[73]  Stummer, W., Pichlmeier, U., Meinel, T., Wiestler, O.D., Zanella, F. and Reulen, H. (2006) Fluorescence-Guided Surgery with 5-Aminolevulinic Acid for Resection of Malignant Glioma: A Randomised Controlled Multicentre Phase III Trial. The Lancet Oncology, 7, 392-401.
https://doi.org/10.1016/s1470-2045(06)70665-9
[74]  Cao, C., Jin, Z., Shi, X., Zhang, Z., Xiao, A., Yang, J., et al. (2022) First Clinical Investigation of Near-Infrared Window IIA/IIB Fluorescence Imaging for Precise Surgical Resection of Gliomas. IEEE Transactions on Biomedical Engineering, 69, 2404-2413.
https://doi.org/10.1109/tbme.2022.3143859
[75]  Zhang, L., Zhou, Y., Wu, B., Zhang, S., Zhu, K., Liu, C., et al. (2023) A Handheld Visible Resonance Raman Analyzer Used in Intraoperative Detection of Human Glioma. Cancers, 15, Article 1752.
https://doi.org/10.3390/cancers15061752
[76]  Belykh, E., Bardonova, L., Abramov, I., Byvaltsev, V.A., Kerymbayev, T., Yu, K., et al. (2023) 5-Aminolevulinic Acid, Fluorescein Sodium, and Indocyanine Green for Glioma Margin Detection: Analysis of Operating Wide-Field and Confocal Microscopy in Glioma Models of Various Grades. Frontiers in Oncology, 13, Article 1156812.
https://doi.org/10.3389/fonc.2023.1156812
[77]  Cakmakci, D., Kaynar, G., Bund, C., Piotto, M., Proust, F., Namer, I.J., et al. (2022) Targeted Metabolomics Analyses for Brain Tumor Margin Assessment during Surgery. Bioinformatics, 38, 3238-3244.
https://doi.org/10.1093/bioinformatics/btac309
[78]  Cakmakci, D., Karakaslar, E.O., Ruhland, E., Chenard, M., Proust, F., Piotto, M., et al. (2020) Machine Learning Assisted Intraoperative Assessment of Brain Tumor Margins Using HRMAS NMR Spectroscopy. PLOS Computational Biology, 16, e1008184.
https://doi.org/10.1371/journal.pcbi.1008184
[79]  Jin, Z., Yue, Q., Duan, W., Sui, A., Zhao, B., Deng, Y., et al. (2022) Intelligent SERS Navigation System Guiding Brain Tumor Surgery by Intraoperatively Delineating the Metabolic Acidosis. Advanced Science, 9, Article 2104935.
https://doi.org/10.1002/advs.202104935
[80]  Mair, M.J., Geurts, M., van den Bent, M.J. and Berghoff, A.S. (2021) A Basic Review on Systemic Treatment Options in WHO Grade II-III Gliomas. Cancer Treatment Reviews, 92, Article 102124.
https://doi.org/10.1016/j.ctrv.2020.102124

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133