|
Pure Mathematics 2024
高阶数值导数的分数阶Tikhonov正则化方法
|
Abstract:
在本文中,我们关注高阶数值导数问题,该问题是不适定的。为了解决这一反问题,我们提出了分数阶Tikhonov正则化方法,用于从一维噪声数据中计算高阶数值导数。本文先用Fourier变换求出问题的精确解,再用分数阶Tikhonov正则化方法构造出问题的正则化解,最后讨论了先验正则化参数选择规则下精确解与正则化近似解的误差估计。
In this paper, we focus on the higher-order numerical derivative problem, which is ill-determined. To solve this inverse problem, we propose a fractional Tikhonov regularization method for calculating higher-order numerical derivatives from one-dimensional noisy data. In this paper, the Fourier transform is used first to write the exact solution of the problem, and then the regularization solution of the problem is constructed by fractional Tikhonov regularization method. Finally, the error estimation of the exact solution and regularization approximate solution under the prior regularization parameter selection rules is discussed.
[1] | Rivlin, T.J. (1975) Optimally Stable Lagrangian Numerical Differentiation. SIAM Journal on Numerical Analysis, 12, 712-725. https://doi.org/10.1137/0712053 |
[2] | Wang, Y.B., Jia, X.Z. and Cheng, J. (2002) A Numerical Differentiation Method and Its Application to Reconstruction of Discontinuity. Inverse Problems, 18, 1461-1476. https://doi.org/10.1088/0266-5611/18/6/301 |
[3] | Anderssen, R.S. and Hegland, M. (1999) For Numerical Differentiation, Dimensionality Can Be a Blessing! Mathematics of Computation, 68, 1121-1141. https://doi.org/10.1090/s0025-5718-99-01033-9 |
[4] | Deans, S.R. (1983) The Radon Transform and Some of Its Applications. Reprint of the 1993 Original. John Wiley & Sons, New York. |
[5] | Cheng, J., Hon, Y.C. and Wang, Y.B. (2004) A Numerical Method for the Discontinuous Solutions of Abel Integral Equations. In: Isozaki, H., Ed., Inverse Problems and Spectral Theory, Vol. 348, American Mathematical Society, Providence, 233-243. |
[6] | Gorenflo, R. and Vessella, S. (1991) Abel Integral Equations. Analysis and Applications. Springer-Verlag, Berlin. |
[7] | Ramm, A.G. and Smirnova, A.B. (2001) On Stable Numerical Differentiation. Mathematics of Computation, 70, 1131-1154. https://doi.org/10.1090/s0025-5718-01-01307-2 |
[8] | Groetsch, C.W. (1991) Differentiation of Approximately Specified Functions. The American Mathematical Monthly, 98, 847-850. https://doi.org/10.1080/00029890.1991.12000802 |
[9] | Qu, R. (1996) A New Approach to Numerical Differentiation and Integration. Mathematical and Computer Modelling, 24, 55-68. https://doi.org/10.1016/s0895-7177(96)00164-1 |
[10] | Cullum, J. (1971) Numerical Differentiation and Regularization. SIAM Journal on Numerical Analysis, 8, 254-265. https://doi.org/10.1137/0708026 |
[11] | Hanke, M. and Scherzer, O. (2001) Inverse Problems Light: Numerical Differentiation. The American Mathematical Monthly, 108, 512-521. https://doi.org/10.1080/00029890.2001.11919778 |
[12] | Qian, Z., Fu, C., Xiong, X. and Wei, T. (2006) Fourier Truncation Method for High Order Numerical Derivatives. Applied Mathematics and Computation, 181, 940-948. https://doi.org/10.1016/j.amc.2006.01.057 |
[13] | Klann, E., Maa?, P. and Ramlau, R. (2006) Two-Step Regularization Methods for Linear Inverse Problems. Journal of Numerical Mathematics, 14, 583-607. https://doi.org/10.1163/156939406778474523 |
[14] | Li, M. and Xiong, X. (2012) On a Fractional Backward Heat Conduction Problem: Application to Deblurring. Computers & Mathematics with Applications, 64, 2594-2602. https://doi.org/10.1016/j.camwa.2012.07.003 |
[15] | Qian, Z. and Feng, X. (2016) A Fractional Tikhonov Method for Solving a Cauchy Problem of Helmholtz Equation. Applicable Analysis, 96, 1656-1668. https://doi.org/10.1080/00036811.2016.1254776 |
[16] | Qian, Z., Fu, C. and Feng, X. (2006) A Modified Method for High Order Numerical Derivatives. Applied Mathematics and Computation, 182, 1191-1200. https://doi.org/10.1016/j.amc.2006.04.059 |
[17] | Gerth, D., Klann, E., Ramlau, R. and Reichel, L. (2015) On Fractional Tikhonov Regularization. Journal of Inverse and Ill-Posed Problems, 23, 611-625. https://doi.org/10.1515/jiip-2014-0050 |
[18] | 刘继军. 不适定问题的正则化方法及应用[M]. 北京: 科学出版社, 2005. |
[19] | Klann, E. and Ramlau, R. (2008) Regularization by Fractional Filter Methods and Data Smoothing. Inverse Problems, 24, Article ID: 025018. https://doi.org/10.1088/0266-5611/24/2/025018 |