全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

某市地铁列车驾驶员SCL-90心理测评及影响因素研究
A Study on SCL-90 Psychological Evaluation and Influencing Factors of Subway Train Drivers in a City

DOI: 10.12677/ap.2024.147480, PP. 289-297

Keywords: 地铁列车驾驶员,SCL-90,网络分析,常模
Subway Train Driver
, SCL-90, Network Analysis, Norms

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:了解地铁列车驾驶员心理健康状况,分析其影响因素,并探索SCL-90的十个因子和相关影响因素之间的关系。方法:使用SCL-90量表对某市地铁公司列车1024位驾驶员进行心理健康状况评估并与地方列车驾驶员常模和2010年以及2020年国内常模进行对比分析;通过症状网络分析方法分析心理健康维度的影响因素。结果:某市1024位地铁列车驾驶员的SCL-90因子分除躯体化、强迫症状两项显著高于2010年国内常模得分,所有因子得分显著低于地方常模分、2010国内常模分及2020年其余项国内常模分(p < 0.05);地铁列车驾驶员心理健康状况与年龄和工龄有明显相关性。结论:某市地铁列车驾驶员心理状况优于全国及部分地区列车驾驶员心理水平;列车驾驶员心理状况影响因素较多,与年龄情况、工作时长及工作年限相关性较强,与结婚状态呈现负相关。
Objective: To assess the mental health status of subway train drivers and analyze the influencing factors, as well as explore the relationship between the ten factors of the SCL-90 and related influencing factors. Methods: The SCL-90 scale was used to evaluate the mental health status of 1024 subway train drivers from a city subway company. Their results were compared with local train driver norms, as well as the 2010 and 2020 national norms. Symptom network analysis was employed to examine the influencing factors of mental health dimensions. Results: The SCL-90 scores of the 1024 subway train drivers from this city were significantly lower than the local norms, the 2010 national norms, and the 2020 national norms for all factors except for somatization and obsessive-compulsive symptoms, which were significantly higher than the 2010 national norm (p < 0.05). The mental health status of subway train drivers showed a significant correlation with age and years of service. Conclusion: The mental health status of subway train drivers in this city is better than that of train drivers nationwide and in some regions. The mental health status of train drivers is influenced by multiple factors, showing strong correlations with age, working hours, and years of service, and a negative correlation with marital status.

References

[1]  (2018). 城市轨道交通运营管理规定. 中华人民共和国国务院公报, (23), 54-61.
[2]  何静, 刘宇(2019). 某市地铁列车驾驶员心理健康水平及影响因素分析. 中国职业医学, 46(6), 714-717.
[3]  刘金铭, 赵松涛, 纪俊, 等(2020). 适用于体检场景的SCL-90常模变迁研究. 精神医学杂志, 33(6), 453-455.
[4]  刘淑红, 周新英(2023). 生物-心理-社会医学护理干预在双相情感障碍患者中的应用效果及对治疗依从性的影响. 医学信息, 36(12),161-164.
[5]  刘昕, 刘丹, 王启文, 等(2024). 基于交叉滞后网络分析探索华中地区年轻男男性行为者抑郁症状的网络结构. 现代预防医学, 51(3), 489-494.
[6]  罗丹, 林征, 卞秋桂, 等(2018). 炎症性肠病患者感知病耻感现状及其对生活质量、服药依从性和心理状态的影响. 中华护理杂志, 53(9), 1078-1083.
[7]  童辉杰(2010). SCL-90量表及其常模20年变迁之研究. 心理科学, 33(4), 928-930+921.
[8]  王姿欢, 俞文兰, 沈壮, 等(2017). 症状自评量表(SCL-90)应用于中国职业女性心理测评的信效度评价. 中国工业医学杂志, 30(4), 247-250.
[9]  晓燕(2007). 腰痛——驾驶员最常见的职业病. 交通与运输, (6), 59.
[10]  徐伟, 陈光辉, 曾玉, 等(2011). 关系研究的新取向: 社会网络分析. 心理科学, 34(2), 499-504.
[11]  杨少华, 王国瑞, 马婧, 等(2023). 西北某铁路局机车司机心理状况调查研究. 工业卫生与职业病, 49(6), 514-517.
[12]  张陆兵, 田月, 陈绍寿, 等(2019). 高铁机车驾驶员职业健康和心理健康状况分析. 中国职业医学, 46(4), 434-437.
[13]  Belvederi Murri, M., Amore, M., Respino, M., & Alexopoulos, G. S. (2018). The Symptom Network Structure of Depressive Symptoms in Late-Life: Results from a European Population Study. Molecular Psychiatry, 25, 1447-1456.
https://doi.org/10.1038/s41380-018-0232-0
[14]  Dang, W., Xu, Y., Ji, J., Wang, K., Zhao, S., Yu, B. et al. (2021). Study of the SCL-90 Scale and Changes in the Chinese Norms. Frontiers in Psychiatry, 11, Article ID: 524395.
https://doi.org/10.3389/fpsyt.2020.524395
[15]  Hevey, D. (2018). Network Analysis: A Brief Overview and Tutorial. Health Psychology and Behavioral Medicine, 6, 301-328.
https://doi.org/10.1080/21642850.2018.1521283
[16]  Wang, K., Hu, Y., He, Q., Xu, F., Wu, Y. J., Yang, Y. et al. (2023). Network Analysis Links Adolescent Depression with Childhood, Peer, and Family Risk Environment Factors. Journal of Affective Disorders, 330, 165-172.
https://doi.org/10.1016/j.jad.2023.02.103
[17]  Wang, Y., Hu, Z., Feng, Y., Wilson, A., & Chen, R. (2020). Changes in Network Centrality of Psychopathology Symptoms between the COVID-19 Outbreak and After Peak. Molecular Psychiatry, 25, 3140-3149.
https://doi.org/10.1038/s41380-020-00881-6
[18]  Wasserman, S., & Faust, K. (1994). Social Network Analysis. Cambridge University Press.
https://doi.org/10.1017/cbo9780511815478
[19]  Zagaria, A., Ballesio, A., Vacca, M., & Lombardo, C. (2023). Repetitive Negative Thinking as a Central Node between Psychopathological Domains: A Network Analysis. International Journal of Cognitive Therapy, 16, 143-160.
https://doi.org/10.1007/s41811-023-00162-4
[20]  Zhu, Z., Sun, Y., Kuang, Y., Yuan, X., Gu, H., Zhu, J. et al. (2022). Contemporaneous Symptom Networks of Multidimensional Symptom Experiences in Cancer Survivors: A Network Analysis. Cancer Medicine, 12, 663-673.
https://doi.org/10.1002/cam4.4904

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133