全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oscillating Spacetime: The Foundation of the Universe

DOI: 10.4236/jmp.2024.158047, PP. 1097-1143

Keywords: Unification of Forces, Electron Model, Cosmological Constant Problem, Foundation of Physics, Aether

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article, spacetime is modeled as a quantum mechanical sonic medium consisting of Planck length oscillations at Planck frequency. Planck length-time oscillations give spacetime its physical constants of c, G and . Oscillating spacetime is proposed to be the single universal field that generates and unifies everything in the universe. The 17 fields of quantum field theory are modeled as lower frequency resonances of oscillating spacetime. A model of an electron is proposed to be a rotating soliton wave in this medium. An electron appears to have wave-particle duality even though it is fundamentally a quantized wave. This soliton wave can momentarily be smaller than a proton in a high energy collision or can have a relatively large volume of an atom’s orbital wave function. Finding an electron causes it to undergo a superluminal collapse to a smaller wave size. This gives an electron its particle-like properties when detected. The proposed wave-based electron model is tested and shown to have an electron’s approximate energy, de Broglie wave properties and undetectable volume. Most important, this electron model is shown to also generate an electron’s electrostatic and gravitational forces. The gravitational properties are derived from the nonlinearity of this medium. When an electron’s gravitational and electrostatic forces are modeled as distortions of soliton waves, the equations become very simple, and a clear connection emerges between these forces. For example, the gravitational force between two Planck masses equals the electrostatic force between two Planck charges. Both force magnitudes equal c/r2.

References

[1]  Milonni, P.W. (1994) The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Academic Press, 9-17, 49.
[2]  Spergel, D.N., Bean, R., Dore, O., Nolta, M.R., Bennett, C.L., Dunkley, J., et al. (2007) Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. The Astrophysical Journal Supplement Series, 170, 377-408.
https://doi.org/10.1086/513700
[3]  Hobson, M.P., Efstathiou, G.P. and Lasenby, A.N. (2006). General Relativity: An Introduction for Physicists. Cambridge University Press.
https://doi.org/10.1017/cbo9780511790904
[4]  Adler, R.J., Casey, B. and Jacob, O.C. (1995) Vacuum Catastrophe: An Elementary Exposition of the Cosmological Constant Problem. American Journal of Physics, 63, 620-626.
https://doi.org/10.1119/1.17850
[5]  Wheeler, J.A. (1955) Geons. Physical Review, 97, 511-536.
https://doi.org/10.1103/physrev.97.511
[6]  Wheeler, J.A. and Ford, K.W. (2010) Geons, Black Holes, and Quantum Foam: A Life in Physics. W. W. Norton & Company, 328.
[7]  Misner, C.W., Thorne, K.S. and Wheeler, J.A. (1973) Gravitation. W. H. Freeman and Company, 1200-1203.
[8]  Carlip, S. (2023) Spacetime Foam: A Review. Reports on Progress in Physics, 86, Article ID: 066001.
https://doi.org/10.1088/1361-6633/acceb4
[9]  Einstein, A. (1940) The Fundamentals of Theoretical Physics. In: Ideas and Opinions, Bonanza, 329.
[10]  Barceló, C. and Jannes, G. (2007) A Real Lorentz-Fitzgerald Contraction. Foundations of Physics, 38, 191-199.
https://doi.org/10.1007/s10701-007-9196-7
[11]  Todd, S.L. and Menicucci, N.C. (2017) Sound Clocks and Sonic Relativity. Foundations of Physics, 47, 1267-1293.
https://doi.org/10.1007/s10701-017-0109-0
[12]  Shanahan, D. (2023) The Lorentz Transformation in a Fishbowl: A Comment on Cheng and Read’s “Why Not a Sound Postulate?”. Foundations of Physics, 53, Article No. 55.
https://doi.org/10.1007/s10701-023-00698-7
[13]  Blair, D.G., McClelland, D.E., Bachor, H.A. and Sandeman, R.J. (1991) The Detection of Gravitational Waves. Cambridge University Press, 45.
[14]  Blair, D.G., Howell, E.J., Ju, L. and Zhao, C. (2012) Advanced Gravitational Wave Detectors. Cambridge University Press, 9, 52.
[15]  Sakharov, A.D. (1967) Vacuum Quantum Fluctuations in Curved Space and the Theory of Gravitation. Doklady Akademii Nauk, 177, 70-71.
[16]  Abo-Shaeer, J.R., Raman, C., Vogels, J.M. and Ketterle, W. (2001) Observation of Vortex Lattices in Bose-Einstein Condensates. Science, 292, 476-479.
https://doi.org/10.1126/science.1060182
[17]  Nguyen, J.H.V., Dyke, P., Luo, D., Malomed, B.A. and Hulet, R.G. (2014) Collisions of Matter-Wave Solitons. Nature Physics, 10, 918-922.
https://doi.org/10.1038/nphys3135
[18]  Garay, L.J. (1995) Quantum Gravity and Minimum Length. International Journal of Modern Physics A, 10, 145-165.
https://doi.org/10.1142/s0217751x95000085
[19]  Baez, J.C. and Olson, S.J. (2002) Uncertainty in Measurements of Distance. Classical and Quantum Gravity, 19, L121-L125.
https://doi.org/10.1088/0264-9381/19/14/101
[20]  Calmet, X., Graesser, M. and Hsu, S.D.H. (2004) Minimum Length from Quantum Mechanics and Classical General Relativity. Physical Review Letters, 93, Article ID: 211101.
https://doi.org/10.1103/physrevlett.93.211101
[21]  Calmet, X. (2008) On the Precision of a Length Measurement. The European Physical Journal C, 54, 501-505.
https://doi.org/10.1140/epjc/s10052-008-0538-1
[22]  Rabin, D. Quotable Quotes.
https://www.goodreads.com/quotes/10872883-the-double-slit-experiment-has-in-it-the-heart-of-quantum
[23]  Shanahan, D. (2014) A Case for Lorentzian Relativity. Foundations of Physics, 44, 349-367.
https://doi.org/10.1007/s10701-013-9765-x
[24]  van der Mark, M.B. (2019) Quantum Particle, Light Clock or Heavy Beat Box? Journal of Physics: Conference Series, 1251, Article ID: 012049.
https://doi.org/10.1088/1742-6596/1251/1/012049
[25]  Perez, A. and Ribisi, S. (2022) Energy-Mass Equivalence from Maxwell Equations. American Journal of Physics, 90, 305-313.
https://doi.org/10.1119/10.0009156
[26]  Korpel, A. (1981) Acousto-Optics—A Review of Fundamentals. Proceedings of the IEEE, 69, 48-53.
https://doi.org/10.1109/proc.1981.11919
[27]  Schrodinger, E. (1930) Über die kraftefreie Bewegung in der relativistischen Quantenmechanik. Sitzungsber. Preuss. Akad. Wiss. Berl. Phys.-math. Kl, 24, 418-428.
[28]  Dirac, P.A.M. (1933) Nobel Prize Lecture.
https://www.nobelprize.org/uploads/2018/06/dirac-lecture.pdf
[29]  Huang, K. (1952) On the Zitterbewegung of the Dirac Electron. American Journal of Physics, 20, 479-484.
https://doi.org/10.1119/1.1933296
[30]  Abbott, B.P., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102.
[31]  LIGO Scientific Collaboration, Virgo Collaboration (2016) Tests of General Relativity with GW150914. Physical Review Letters, 116, Article ID: 22110.
[32]  Moreno, M. (2018) Kerr Effect.
https://www.ifsc.usp.br/~strontium/Teaching/Material2018-1%20SFI5708%20Eletromagnetismo/Monografia%20-%20Michelle%20-%20Kerr.pdf
[33]  Feldman, A., Horowitz, D. and Waxier, R.M. (1973) Laser Damage in Materials. National Bureau of Standards, NBSIR 73-119.
[34]  Worden, P. and Overduin, J. (2022) Einstein’s Happiest Moment: The Equivalence Principle.
https://arxiv.org/abs/2209.13781
[35]  NIST Reference on Constants, Units and Uncertainty.
https://physics.nist.gov/cuu/Constants/alpha.html
[36]  Henderson, G. (1979) How a Photon Is Created or Absorbed. Journal of Chemical Education, 56, 631.
https://doi.org/10.1021/ed056p631
[37]  Minev, Z.K., Mundhada, S.O., Shankar, S., Reinhold, P., Gutiérrez-Jáuregui, R., Schoelkopf, R.J., et al. (2019) To Catch and Reverse a Quantum Jump Mid-Flight. Nature, 570, 200-204.
https://doi.org/10.1038/s41586-019-1287-z
[38]  Matei, D.G., Legero, T., Häfner, S., Grebing, C., Weyrich, R., Zhang, W., et al. (2017) 1.5 μm Lasers with Sub-10 mHz Linewidth. Physical Review Letters, 118, Article ID: 263202.
https://doi.org/10.1103/physrevlett.118.263202
[39]  Brandewie, R.A., Davis, W.C. and Macken, J.A. (1977) United States Patent US4042822 A—Laser Radar Device Utilizing Heterodyne Detection.
[40]  Macken, J.A. (2015) Energetic Spacetime: The New Aether. Proceedings of SPIE, 9570, 383-397.
https://doi.org/10.1117/12.2186257
[41]  Macken, J.A. (2015) Spacetime-Based Foundation of Quantum Mechanics and General Relativity. In: Nascimento, M.A., et al., Eds., Progress in Theoretical Chemistry and Physics, Vol. 29, Springer, 219-245.
[42]  Rauch, H., Wölwitsch, H., Kaiser, H., Clothier, R. and Werner, S.A. (1996) Measurement and Characterization of the Three-Dimensional Coherence Function in Neutron Interferometry. Physical Review A, 53, 902-908.
https://doi.org/10.1103/physreva.53.902
[43]  Lightman, A.P. (1993) Ancient Light: Our Changing View of the Universe. Harvard University Press, 61.
[44]  Liddle, A. (2007) An Introduction to Modern Cosmology. 2nd Edition, Wiley, 157.
[45]  Dicke, R.H. (1970) Gravitation and the Universe: Jayne Lectures for 1969. American Philosophical Society, 62.
[46]  Macken, J.A. (2015) The Universe Is Only Spacetime. Chapter 13 & 14.
https://www.researchgate.net/publication/280559179

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133