全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

国内外剩余油研究进展综述
A Comprehensive Review of Progress in Domestic and International Studies on Residual Oil

DOI: 10.12677/me.2024.123051, PP. 418-425

Keywords: 剩余油,饱和度测井,井间动态监测,微观剩余油
Remaining Oil
, Saturation Logging, Inter-Well Dynamic Monitoring, Micro-Scale Remaining Oil

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究通过全面调研,系统梳理了国内外剩余油研究技术现状,从宏观角度剖析剩余油成因类型,详细阐述饱和度测井、剩余油井间监测等主流识别技术;从微观层面探讨剩余油研究手段、形成机理、赋存状态及其对提升采收率的意义。
This study conducts a comprehensive investigation and systematically sorts out the current status of remaining oil research technologies both domestically and abroad. It analyzes the macroscopic causes of remaining oil from a broad perspective, elaborating on mainstream identification techniques such as saturation logging and inter-well monitoring for remaining oil. On a micro level, it explores research methods of remaining oil, its formation mechanisms, existence states, and the significance of these factors in enhancing recovery rates.

References

[1]  Morris, F., Morris, C. and Quinlan, T. (2005) Applications of Pulsed Neutron Capture Logs in Reservoir Management. SPE Western Regional Meeting, Irvine, 30 March-1 April 2005, SPE-93889-MS.
https://doi.org/10.2118/93889-ms
[2]  Tao, B., Zhou, J., Wu, K. and Zhang, Z. (2020). Pulsed–neutron Log Design for Uncertain Water Salinity Reservoirs in an Oil Producer Offshore. Offshore Technology Conference Asia, Kuala Lumpur, 2-6 November 2020, OTC-30346-MS.
https://doi.org/10.4043/30346-ms
[3]  Al-Nasser, M.N., et al. (2020) Quantifying Gas Saturation with Pulsed Neutron Logging-An Innovative Approach. SPE Reservoir Characterization and Simulation Conference and Exhibition, Abu Dhabi, 16-18 September 2013, SPE-166025-MS.
[4]  Mufarrej, J., et al. (2024) Unlocking the Reservoir Flow Evaluation and Water Saturation in a Low Formation Water Salinity Using Production Logging and Pulsed Neutron Logging While Lifting the Well by Flow Jet Pump in an Oil Well of Wafra Joint Operations. Offshore Technology Conference Asia, Kuala Lumpur, 27 February-1 March 2024, OTC-34757-MS.
[5]  Ma, S.M., Guergueb, N., Guo, W. and Eid, M. (2021) Intrinsic Carbon-Oxygen Logging for Enhanced Consistency of Reservoir Saturation Monitoring. SPWLA 62nd Annual Online Symposium Transactions, 15-20 May 2021, 1-9.
https://doi.org/10.30632/spwla-2021-0021
[6]  Van Steene, M., Ma, S. and Ghadiry, S. (2023) Rigless Mineralogy Logging—A Reality for Improved Evaluation of Complex Formations. Middle East Oil, Gas and Geosciences Show, Manama, 19-21 February 2023, SPE-213525-MS.
https://doi.org/10.2118/213525-ms
[7]  Kelder, O. and Hajari, A.S. (2004) C/O Logging Methodologies: Comparing Saturation Determination Techniques. SPE 90339.
[8]  Denney, D. (2005) Atlantis, the Quest for Stray Shallow-Water-Flow Sands. Journal of Petroleum Technology, 57, 50-52.
https://doi.org/10.2118/1005-0050-jpt
[9]  Meador, R.A. (1975) Dielectric Constant Logging, a Salinity Independent Estimation of Formation Water Volume. Fall Meeting of the Society of Petroleum Engineers of AIME, 28 September-1 October 1975, Dallas, SPE-5504-MS.
[10]  Nakata, R., Nakata, N., Girard, A., Ichikawa, M., Kato, A., Lumley, D., et al. (2022). Time-Lapse Crosswell Seismic Monitoring of CO2 Injection at the Nagaoka CCS Site Using Elastic Full-Waveform Inversion. In: Abubakar, A. and Hakami, A., Eds., Second International Meeting for Applied Geoscience & Energy, Society of Exploration Geophysicists, 802-806.
https://doi.org/10.1190/image2022-3744414.1
[11]  Marsala, A.F., Lyngra, S., Safdar, M., Zhang, P. and Wilt, M. (2015). Crosswell Electromagnetic Induction between Two Widely Spaced Horizontal Wells: Coiled-Tubing Conveyed Data Collection and 3D Inversion from a Carbonate Reservoir in Saudi Arabia. In: Schneider, R.V., Ed., SEG Technical Program Expanded Abstracts 2015, Society of Exploration Geophysicists, 2848-2852.
https://doi.org/10.1190/segam2015-5891203.1
[12]  Shabro, V., Prodanovic, M., Arns, C.H., et al. (2010) Pore Scale Modeling of Two-Phase Flow. 18th International Conference on Computational Methods in Water Resources, Barcelona, 21-24 June 2010, 1-8.
[13]  Huang, H., Wang, L. and Lu, X. (2011) Evaluation of Three Lattice Boltzmann Models for Multiphase Flows in Porous Media. Computers & Mathematics with Applications, 61, 3606-3617.
https://doi.org/10.1016/j.camwa.2010.06.034
[14]  张光明, 许昌杰, 周晓俊, 赵英. 高30断块油藏剩余油分布研究[J]. 江汉石油学院学报, 2003, 25(4): 102-108.
[15]  孙明. 元城油田精细油藏描述与剩余油分布研究[D]: [博士学位论文]. 北京: 中国地质大学, 2009.
[16]  高永利, 江苗, 陈明强. 马岭油田南一区直32油藏剩余油研究[J]. 西安石油大学学报(自然科学版), 2006(3): 52-54.
[17]  闫坤, 等. 聚驱后优势渗流通道流线数值模拟识别方法的建立及应用[J]. 油气藏评价与开发, 2019, 9(2): 33-37.
[18]  刘薇薇, 等. 水驱砂岩油藏优势渗流通道识别[J]. 复杂油气藏, 2020, 13(1): 42-47.
[19]  胡丹丹, 等. 厚油层层内夹层对剩余油的影响研究[J]. 特种油气藏, 2009, 16(3): 49-52.
[20]  温静. “双高期”油藏剩余油分布规律及挖潜对策[J]. 特种油气藏, 2004, 11(4): 50-53.
[21]  赵永胜. 剩余油分布研究中的几个问题[J]. 大庆石油地质与开发, 1996(4): 72-74, 86.
[22]  兰丽凤, 等. 基于小井距检查井的夹层分布特征及对剩余油分布的控制作用——以萨尔图油田北二西区为例[J]. 油气地质与采收率, 2013, 20(4): 83-87.
[23]  周超, 等. 杏树岗油田检查井水洗规律研究-以X6-12-JE24井为例[J]. 长江大学学报(自科版) (中旬), 2013, 10(3): 73-76.
[24]  高兴军, 等. 高含水油田密闭取心检查井水淹状况及主控因素研究: 以扶余油田泉四段油层为例[J]. 地学前缘, 2012, 19(2): 162-170.
[25]  王吉涛, 李俊键. 高含水油田剩余油研究方法、分布特征与发展趋势[J]. 油气地质与采收率, 2024, 31(2): 58-69.
[26]  陈元千. 油气藏的物质平衡方程式及其应用[M]. 北京: 石油工业出版社, 1979.
[27]  杨世刚, 励学思. 油井生产动态分析[M]. 东营: 石油大学出版社, 1996.
[28]  孙友国, 等. 储层测井综合评价在剩余油分布中的应用[J]. 国外测井技术, 2003(2): 63-71.
[29]  刘春艳. 老井测井储层评价与剩余油挖潜研究[J]. 国外测井技术, 2008, 23(5): 32-36.
[30]  李安琪. 水淹层测井解释及剩余油分布研究[D]: [博士学位论文]. 成都: 西南石油学院, 2004.
[31]  李淑霞, 陈月明, 冯其红, 张庆珍. 利用井间示踪剂确定剩余油饱和度的方法[J]. 石油勘探与开发, 2001, 28(2): 73-75.
[32]  李科星, 等. 疏松砂岩油藏大孔道识别综述[J]. 西南石油大学学报, 2007, 29(5): 42-44.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133