全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

金属镍内典型晶界的迁移热力学分子动力学模拟
Molecular Dynamics Simulation of Migration Thermodynamics for Typical Grain Boundary in Ni

DOI: 10.12677/ms.2024.147120, PP. 1068-1075

Keywords: 分子动力学,晶界迁移,剪切耦合,热力学
Molecular Dynamics
, Grain Boundary Migration, Shear-Coupled, Thermodynamics

Full-Text   Cite this paper   Add to My Lib

Abstract:

为进一步揭示温度对晶界迁移行为的复杂影响,本研究基于分子动力学模拟探究了Ni 36.9? {310}001对称倾斜晶界在100~1000 K范围内的迁移热力学、迁移率和剪切耦合迁移等内容。结果表明,在100~600 K时晶界启动迁移所需临界驱动力将随温度升高而逐渐降低,但在600~1000 K时则保持稳定,因而晶界迁移的热力学行为将从热激活模式转变为无热激活。在所探究的温度范围内,晶界迁移率随温度的变化趋势与临界驱动力对应趋势并不相反或相同,因而认为较难启动迁移的晶界会具有相对较低迁移率的已有观点并不正确。该晶界沿晶界面法向迁移的同时还在晶界面内发生剪切运动,也即呈现剪切耦合迁移的特征,在100~800 K时的耦合强度最高,随后因晶界结构改变而导致耦合强度持续降低。
In order to further reveal intricate influences of temperature on the migration behaviors of grain boundary, we investigated the migration thermodynamics, mobility and shear-coupled migration of Ni 36.9? {310}001 symmetrical tilt grain boundary at 100~1000 K based on molecular dynamics simulations. The results show that the threshold driving force of initiating boundary migration at 100~600 K gradually decreases with the increasing the temperature, but keeps stable at 600~1000 K. This indicates a transition of the migration thermodynamics from thermally activated model to athermally activated model. The tendencies shown in the variation of grain boundary mobility with the temperature are not contrary or consistent with the counterpart of threshold driving force. Therefore, the existing viewpoint that the grain boundary being hard to initiate migration will be of relatively low mobility is not correct. This grain boundary will make migration along the boundary normal direction and also the shear motion in the boundary plane, i.e., exhibiting the characteristic of shear-coupled migration. The coupled strength keeps the maximum at 100~800 K and then continuously declines due to alteration of grain boundary structure.

References

[1]  Sutton, A.P. and Balluffi, R.W. (1995) Interfaces in Crystalline Materials. Oxford Science Publications, Oxford.
[2]  Gottstein, G. and Shvindlerman, L.S. (2011) Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications. CRC Press, Boca Raton.
[3]  Zhang, K., Weertman, J.R. and Eastman, J.A. (2005) Rapid Stress-Driven Grain Coarsening in Nanocrystalline Cu at Ambient and Cryogenic Temperatures. Applied Physics Letters, 87, Article 061921.
https://doi.org/10.1063/1.2008377
[4]  Sun, F., Zú?iga, A., Rojas, P. and Lavernia, E.J. (2006) Thermal Stability and Recrystallization of Nanocrystalline Ti Produced by Cryogenic Milling. Metallurgical and Materials Transactions A, 37, 2069-2078.
https://doi.org/10.1007/bf02586127
[5]  Brons, J.G., Padilla, H.A., Thompson, G.B. and Boyce, B.L. (2013) Cryogenic Indentation-Induced Grain Growth in Nanotwinned Copper. Scripta Materialia, 68, 781-784.
https://doi.org/10.1016/j.scriptamat.2012.12.026
[6]  Olmsted, D.L., Foiles, S.M. and Holm, E.A. (2007) Grain Boundary Interface Roughening Transition and Its Effect on Grain Boundary Mobility for Non-Faceting Boundaries. Scripta Materialia, 57, 1161-1164.
https://doi.org/10.1016/j.scriptamat.2007.07.045
[7]  Yu, T., Yang, S. and Deng, C. (2019) Survey of Grain Boundary Migration and Thermal Behavior in Ni at Low Homologous Temperatures. Acta Materialia, 177, 151-159.
https://doi.org/10.1016/j.actamat.2019.07.034
[8]  Homer, E.R., Foiles, S.M., Holm, E.A. and Olmsted, D.L. (2013) Phenomenology of Shear-Coupled Grain Boundary Motion in Symmetric Tilt and General Grain Boundaries. Acta Materialia, 61, 1048-1060.
https://doi.org/10.1016/j.actamat.2012.10.005
[9]  Winning, M., Gottstein, G. and Shvindlerman, L.S. (2001) Stress Induced Grain Boundary Motion. Acta Materialia, 49, 211-219.
https://doi.org/10.1016/s1359-6454(00)00321-9
[10]  Trautt, Z.T., Upmanyu, M. and Karma, A. (2006) Interface Mobility from Interface Random Walk. Science, 314, 632-635.
https://doi.org/10.1126/science.1131988
[11]  Janssens, K.G.F., Olmsted, D., Holm, E.A., Foiles, S.M., Plimpton, S.J. and Derlet, P.M. (2006) Computing the Mobility of Grain Boundaries. Nature Materials, 5, 124-127.
https://doi.org/10.1038/nmat1559
[12]  Yang, L. and Li, S. (2015) A Modified Synthetic Driving Force Method for Molecular Dynamics Simulation of Grain Boundary Migration. Acta Materialia, 100, 107-117.
https://doi.org/10.1016/j.actamat.2015.08.051
[13]  Plimpton, S. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117, 1-19.
https://doi.org/10.1006/jcph.1995.1039
[14]  Foiles, S. and Hoyt, J. (2006) Computation of Grain Boundary Stiffness and Mobility from Boundary Fluctuations. Acta Materialia, 54, 3351-3357.
https://doi.org/10.1016/j.actamat.2006.03.037
[15]  Stukowski, A. (2009) Visualization and Analysis of Atomistic Simulation Data with OVITO—The Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18, Article 015012.
https://doi.org/10.1088/0965-0393/18/1/015012
[16]  Han, J., Thomas, S.L. and Srolovitz, D.J. (2018) Grain-Boundary Kinetics: A Unified Approach. Progress in Materials Science, 98, 386-476.
https://doi.org/10.1016/j.pmatsci.2018.05.004
[17]  Rahman, M.J., Zurob, H.S. and Hoyt, J.J. (2014) A Comprehensive Molecular Dynamics Study of Low-Angle Grain Boundary Mobility in a Pure Aluminum System. Acta Materialia, 74, 39-48.
https://doi.org/10.1016/j.actamat.2014.03.063
[18]  Deng, C. and Schuh, C.A. (2011) Diffusive-to-Ballistic Transition in Grain Boundary Motion Studied by Atomistic Simulations. Physical Review B, 84, Article 214102.
https://doi.org/10.1103/physrevb.84.214102

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133