全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Flowers Are Evoked to Bring Us Delicious Coffee

DOI: 10.4236/as.2024.157042, PP. 754-779

Keywords: Rubiaceae, Café, Biometeorology, Climate, Adaptability

Full-Text   Cite this paper   Add to My Lib

Abstract:

Coffee is highly appreciated as stimulant. Brazil is the first producer and second consumer in the world. Flower evocation triggered by environmental signals is essential for adaptability and productivity, and despite that it is neglected and barely considered as a part of the reproductive cycle. Aiming to review molecular mechanisms producing phenological responses observed in the fields, orthologs to A. thaliana CO, FLC/FLM, FLT, SOC and VRN genes were identified in silico for C. arabica and its ancestors C. canephora and C. eugenioides. Protein structures and conserved domains, regulatory elements in promoters, and the related literature in both genera were accessed and compared. Hypotheses regarding Coffea spp. orthologs responsiveness to light and temperature signals at the tropics are proposed. Preliminary analysis of phenological data taken from early, intermediary and late C. arabica plants are included to illustrate the diversity regarding flower bud emission, which quite certainly is defined during flower evocation.

References

[1]  Mes, M.G. (1957) Studies on the Flowering of Coffea arabica L. III: Various Phenomena Associated with the Dormancy of Coffee Flower Buds. Portugaliae Acta Biologica, 5, 25-44.
[2]  Angelo, P.C.S. (2017) Aspectos citológicos da microgametogênese no cafeeiro. Documentos 12. Embrapa Café, DF, Brasil.
https://ainfo.cnptia.embrapa.br/digital/bitstream/item/158634/1/Aspecto-citologico-da-microgametogenese.pdf
[3]  Camargo, A.P. and Camargo, M.B.P. (2001) Definição e esquematização das fases fenológicas do cafeeiro arabica nas condições tropicais do Brasil. Bragantia, 60, 65-68.
https://doi.org/10.1590/S0006-87052001000100008
[4]  Diaz, J. and Alvarez-Buylla, E.R. (2021) Spatio-Temporal Dynamics of the Patterning of Arabidopsis Flower Meristem. Frontiers in Plant Science, 12, Article 585139.
https://doi.org/10.3389/fpls.2021.585139
[5]  Rena, A.B. (2007) Comments to Influência do clima na produtividade de grãos e na qualidade da bebida do café. In: Salva, T.J.G., Guerreiro-Filho, O., Thomaziello, R.A., Fazuoli, L.C., Eds., Cafés de qualidade, Instituto Agronômico Campinas, 9-12.
[6]  Lloret, A., Badenes, M.L. and Rios, G. (2018) Modulation of Dormancy and Growth Responses in Reproductive Buds of Temperate Trees. Frontiers in Plant Science, 9, Article 1368.
https://doi.org/10.3389/fpls.2018.01368
[7]  Custodio, A.A.P., Lemos, L.B., Mingotte, F.L.C. et al. (2014) Florescimento de cafeeiros sob manejos de irrigação, faces de exposição solar e posições na planta. Coffee Science, 9, 245-257.
[8]  Arcila-Pulgarin, J., Buhr, L., Bleiholder, H., et al. (2002) Application of the Extended BBCH Scale for the Description of the Growth Stages of Coffee (Coffea spp.). Annals of Applied Biology, 141, 19-27.
https://doi.org/10.1111/j.1744-7348.2002.tb00191.x
[9]  Meyer, J.L.S., Carmello-Guerreiro, S.M. and Mazzafera, P. (2013) A Functional Role for the Colleters of Coffee Flowers. AoB Plants, 5, plt029.
https://doi.org/10.1093/aobpla/plt029
[10]  DaMatta, F.M., Ronchi, C.P., Maestri, M.M. et al. (2007) Ecophysiology of Coffee Growth and Production. Brazilian Journal of Plant Physiology, 19, 485-510.
https://doi.org/10.1590/S1677-04202007000400014
[11]  Majerowicz, N. and Sondahl, M.R. (2005) Induction and Differentiation of Reproductive Buds in Coffea arabica L. Brazilian Journal of Plant Physiology, 17, 247-254.
https://doi.org/10.1590/S1677-04202005000200008
[12]  Lee, Y., Olsen, J. and Torre, S. (2023) Average Daily Temperature Controls Floral Bud Formation Rate, Callose Deposition and Flower Development of Hydrangea macrophylla ‘Early Blue’. The Journal of Horticultural Science and Biotechnology, 99, 106-114.
https://doi.org/10.1080/14620316.2023.2239253
[13]  Soppe, W.J.J., Vinegra de la Torre, N. and Albani, M.C. (2021) The Diverse Roles of FLOWERING LOCUS C in Annual and Perennial Brassicaceae Species. Frontiers in Plant Science, 12, Article 627258.
https://doi.org/10.3389/fpls.2021.627258
[14]  Karami, O., Mueller-Roebber, B. and Rahimi, A. (2023) The Central Role of Stem Cells in Determining Plant Longevity Variation. Plant Communications, 4, Article 100566.
https://doi.org/10.1016/j.xplc.2023.100566
[15]  Aukerman, M.J. and Amasino, R.M. (1998) Floral Induction and Florigen. Cell, 93, 491-494.
https://doi.org/10.1016/S0092-8674(00)81178-2
[16]  Camayo-Velez, G.C., Chaves-Cordoba, B., Arcila-Pulgarin, J., et al. (2003) Desarrollo floral del cafeto y su relacion con las condiciones climaticas de Chinchina-Caldas. Cenicafe, 54, 35-49.
[17]  Rena, A.B. and Maestri, M. (1985) Fisiologia do cafeeiro. Informe Agropecuário, 11, 26-40.
[18]  Morais, H., Caramori, P.H., Koguishi, M.S., et al. (2008) Escala fenológica detalhada da fase reprodutiva de Coffea arabica. Bragantia, 67, 257-260.
https://doi.org/10.1590/S0006-87052008000100031
[19]  Nascimento, M.N.D., Alves, J.D., Soares, A.M., et al. (2008) Alterações bioquímicas de plantas e morfológicas de gemas de cafeeiro associadas a eventos do florescimento em resposta a elementos meteorológicos. Ciência Rural, 38, 300-307.
https://doi.org/10.1590/S0103-84782008000500015
[20]  Angelo, P.C.S., Ferreira, I.B., de Carvalho, C.H.S., et al. (2019) Arabica Coffee Fruits Phenology Assessed through Degree Days, Precipitation and Solar Radiation Exposure on a Daily Basis. International Journal of Biometeorology, 63, 831-843.
https://doi.org/10.1007/s00484-019-01693-2
[21]  Petek, M.R., Sera, T. and Fonseca, I.C.D.B. (2009) Exigências climáticas para o desenvolvimento e maturação dos frutos de cultivares de Coffea arabica. Bragantia, 68, 169-181.
https://doi.org/10.1590/S0006-87052009000100018
[22]  Gaspari-Pezzone, C.D., Bonturi, N., Filho, O.G., et al. (2012) Gene Expression Profile during Coffee Fruit Development and Identification of Candidate Markers for Phenological Stages. Pesquisa Agropecuaria Brasileira, 47, 972-982.
https://doi.org/10.1590/S0100-204X2012000700014
[23]  Pezzopane, J.R.M., Salva, T.D.J.G., Lima, V.B.D., et al. (2012) Agrometeorological Parameters for Prediction of the Maturation Period of Arabica Coffee Cultivars. International Journal of Biometeorology, 56, 843-851.
https://doi.org/10.1007/s00484-011-0486-6
[24]  Sagio, S.A., Lima, A.A., Barreto, H.G., et al. (2013) Physiological and Molecular Analyses of Early and Late Coffea arabica Cultivars at Different Stages of Fruit Ripening. Acta Physiologiae Plantarum, 35, 3091-3098.
https://doi.org/10.1007/s11738-013-1342-6
[25]  Andreazi, E., Carducci, F.C., Sera, T., et al. (2017) Ciclo precoce de maturação e produtividade em genótipos de café derivados de C1195-5-6-2. Coffee Science, 12, 575-582.
https://doi.org/10.25186/cs.v12i4.1375
[26]  Souza, C.A.D., Rocha, R.B., Alves, E.A., et al. (2017) Componentes genéticos do desenvolvimento e maturação de frutos de Coffea canephora Pierre ex A Froehner. Coffee Science, 12, 355-364.
https://doi.org/10.25186/cs.v12i3.1295
[27]  Faguang, H., Shi, R., Fu, X., et al. (2024) Transcriptome and Metabolome Profiling Provides Insight into the Regulatory Network of Fruit Coloration in Coffea arabica L. Scientia Horticulturae, 326, Article 112695.
https://doi.org/10.1016/j.scienta.2023.112695
[28]  Lopez-Carmona, D.A., Gallegos, A., Palma-Lopez, D.J., et al. (2021) Seleccion de tierras para el cultivo de cafe en zonas con informacion escasa: analisis espacial del territorio y conocimiento local. Ecosistemas y Recursos Agropecuarios, 8, e2419.
https://doi.org/10.19136/era.a8n1.2419
[29]  von Martius, C.F.P. (1881) Flora Brasiliensis. Garden, M.B.
[30]  CONAB (2024) Acompanhamento da safra brasileira de cafe.
https://www.conab.gov.br/info-agro/safras/cafe
[31]  Ovalle-Rivera, O., Laderach, P., Bunn, C., et al. (2015) Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change. PLOS ONE, 10, e0124155.
https://doi.org/10.1371/journal.pone.0124155
[32]  Gomes, L., Bianchi, F., Cardoso, I., et al. (2020) Agroforestry Systems Can Mitigate the Impacts of Climate Change on Coffee Production: A Spatially Explicit Assessment in Brazil. Agriculture, Ecosystems and Environment, 294, Article 106858.
https://doi.org/10.1016/j.agee.2020.106858
[33]  Driedonks, N., Rieu, I. and Vriezen, W.H. (2016) Breeding for Plant Heat Tolerance at Vegetative and Reproductive Stages. Plant Reproduction, 29, 67-79.
https://doi.org/10.1007/s00497-016-0275-9
[34]  Alonso-Blanco, C., El-Assal, S.E.-D., Coupland, G., et al. (1998) Analysis of Natural Allelic Variation at Flowering Time Loci in the Landsberg erecta and Cape Verde Islands Ecotypes of Arabidopsis thaliana. Genetics, 149, 749-764.
https://doi.org/10.1093/genetics/149.2.749
[35]  Koornneef, M., Alonso-Blanco, C. and Vreugdenhil, D. (2004) Naturally Occurring Genetic Variation in Arabidopsis thaliana. Annual Reviews of Plant Biology, 55, 141-172.
https://doi.org/10.1146/annurev.arplant.55.031903.141605
[36]  Weigel, D. (2011) Natural Variation in Arabidopsis: From Molecular Genetics to Ecological Genomics. Plant Physiology, 158, 2-22.
https://doi.org/10.1104/pp.111.189845
[37]  Suter, L., Ruegg, M., Zemp, N., et al. (2014) Gene Regulatory Variation Mediates Flowering Responses to Vernalization along an Altitudinal Gradient in Arabidopsis. Plant Physiology, 166, 1928-1942.
https://doi.org/10.1104/pp.114.247346
[38]  Kinmonth-Schultz, H.A., Tong, X., Lee, J., et al. (2016) Cool Night-Time Temperatures Induce the Expression of CONSTANS and FLOWERING LOCUS T to Regulate Flowering in Arabidopsis. New Phytologist, 211, 208-224.
https://doi.org/10.1111/nph.13883
[39]  Kinmonth-Schultz, H.A., Lewandowska-Sabat, A., Imaizumi, T., et al. (2021) Flowering Times of Wild Arabidopsis Accessions from Across Norway Correlate with Expression Levels of FT, CO, and FLC Genes. Frontiers in Plant Science, 12, Article 747740.
https://doi.org/10.3389/fpls.2021.747740
[40]  Katha, J., Byrareddy, V.M., Mushtaqa, S., et al. (2021) Temperature and Rainfall Impacts on Robusta Coffee Bean Characteristics. Climate Risk Management, 102, Article 100281.
https://doi.org/10.1016/j.crm.2021.100281
[41]  Fulgione, A., Neto, C., Elfarargi, A.F., et al. (2022) Parallel Reduction in Flowering Time from de novo Mutations Enable Evolutionary Rescue in Colonizing Lineages. Nature Communications, 13, Article No. 1461.
https://doi.org/10.1038/s41467-022-28800-z
[42]  Richardson, D., Kath, J., Byrareddy, V.M., et al. (2023) Synchronous Climate Hazards Pose an Increasing Challenge to Global Coffee Production. PLOS CLIMATE, 2, e0000134.
https://doi.org/10.1371/journal.pclm.0000134
[43]  Sadka, A., Walker, H., Dor Haim, C., et al. (2023) Just Enough Fruit: Understanding Feedback Mechanisms during Sexual Reproductive Development. Journal of Experimental Botany, 74, 2448-2461.
https://doi.org/10.1093/jxb/erad048
[44]  Jaeger, K.E. and Wigge, P.A. (2007) FT Protein Acts as a long-Range Signal in Arabidopsis. Current Biology, 17, 1050-1054.
https://doi.org/10.1016/j.cub.2007.05.008
[45]  Notaguchi, M., Abe, M., Kimura, T., et al. (2008) Long-Distance, Graft-Transmissible Action of Arabidopsis FLOWERING LOCUS T Protein to Promote Flowering. Plant and Cell Physiology, 49, 1645-1658.
https://doi.org/10.1093/pcp/pcn154
[46]  Zeevaart, J.A.D. (2008) Leaf-Produced Floral Signals. Current Opinion in Plant Biology, 11, 541-547.
https://doi.org/10.1016/j.pbi.2008.06.009
[47]  Komeda, Y. (2004) Genetic Regulation of Time to Flower in Arabidopsis thaliana. Annual Review of Plant Biology, 55, 521-535.
https://doi.org/10.1146/annurev.arplant.55.031903.141644
[48]  Schoendorf, A., Bronner, R., Broadhvest, J., et al. (1998) Altered Expression of Flowering Class B and Class C Genes in the Appendix Tobacco Mutant. Sexual Plant Reproduction, 11, 140-147.
https://doi.org/10.1007/s004970050131
[49]  Hou, C.-J. and Yang, C.-H. (2009) Functional Analysis of FT and TFL1 Orthologs from Orchid (Oncidium Gower Ramsey) That Regulate the Vegetative to Reproductive Transition. Plant and Cell Physiology, 50, 1544-1557.
https://doi.org/10.1093/pcp/pcp099
[50]  Airoldi, C.A. (2010) Determination of Sexual Organ Development. Sexual Plant Reproduction, 23, 53-62.
https://doi.org/10.1007/s00497-009-0126-z
[51]  Liu, X., Zhang, J., Abuahmad, A., et al. (2016) Analysis of Two TFL1 Homologs of Dogwood Species (Cornus L.) Indicates Functional Conservation in Control of Transition to Flowering. Planta, 243, 1129-1141.
https://doi.org/10.1007/s00425-016-2466-x
[52]  Yarur, A., Soto, E., Leon, G., et al. (2016) The Sweet Cherry Prunus avium FLOWERING LOCUS T Gene Is Expressed during Floral Bud Determination and Can Promote Flowering in a Winter-Annual Arabidopsis Accession. Plant Reproduction, 29, 311-322.
https://doi.org/10.1007/s00497-016-0296-4
[53]  Ospina-Zapata, D., Madrigal, Y., Alzate, J., et al. (2020) Evolution and Expression of Reproductive Transition Regulatory Genes FT/TFL1 with Emphasis in Selected Neotropical Orchids. Frontiers in Plant Science, 11, Article 469.
https://doi.org/10.3389/fpls.2020.00469
[54]  Sumitomo, K., Nakano, Y., Hisamatsu, T., et al. (2023) Delayed Flowering Due to ‘Cold Memory’ Is Regulated by SUppression of FLOWERING LOCUS T-Like 3 Gene in Chrysanthemums. The Journal of Horticultural Science and Biotechnology, 98, 334-341.
https://doi.org/10.1080/14620316.2022.2136112
[55]  Li, C., Fu, Q., Niu, L., et al. (2017) Three TFL1 Homologues Regulate Floral Initiation in the Biofuel Plant Jatropha curcas. Science Reports, 7, Article No. 43090.
https://doi.org/10.1038/srep43090
[56]  de Moura , S.M., Artico S., Lima, C., et al. (2017) Functional Characterization of AGAMOUS-Subfamily Members from Cotton during Reproductive Development and in Response to Plant Hormones. Plant Reproduction, 30, 19-39.
https://doi.org/10.1007/s00497-017-0297-y
[57]  Adeyemo, O.S., Hyde, P.T. and Setter, T. L. (2019) Identification of FT Family Genes That Respond to Photoperiod, Temperature and Genotype in Relation to Flowering in Cassava (Manihot esculenta, Crantz). Plant Reproduction, 32, 181-191.
https://doi.org/10.1007/s00497-018-00354-5
[58]  Krishna, Y.B., Vyavahare, S.N., Patil, S.I., et al. (2023) Molecular Control of Flowering Regulation in Mango. Acta Horticulturae, 1362, 97-106.
https://doi.org/10.17660/ActaHortic.2023.1362.14
[59]  de Oliveira, R.R., Cesarino I, Mazzafera., P., et al. (2014) Flower Development in Coffea arabica L: New Insights into MADS-Box Genes. Plant Reproduction, 27, 79-94.
https://doi.org/10.1007/s00497-014-0242-2
[60]  Lopez, M.E., Santos, I.S., de Oliveira, R.R., et al. (2021) An Overview of the Endogenous and Environmental Factors Related to the Coffea arabica Flowering Process. Beverage Plant Research, 1, Article No. 13.
https://doi.org/10.48130/BPR-2021-0013
[61]  Rume, G.C., de Oliveira, R.R, Ribeiro, T.H.C., et al. (2023) Genome-Wide and Expression Analyses of MADS-Box Genes in the Tetraploid Coffea arabica L. and Its Diploid Parental Subgenomes. Plant Gene, 34, Article 100413.
https://doi.org/10.1016/j.plgene.2023.100413
[62]  Cardon, C.H., de Oliveira, R.R., Lesy, V., et al. (2022) Expression of Coffee Florigen CaFT1 Reveals a Sustained Floral Induction Window Associated with Asynchronous Flowering in Tropical Perennials. Plant Science, 325, Article 111479.
https://doi.org/10.1016/j.plantsci.2022.111479
[63]  Schwartz, C., Balasubramanian, S., Warthmann, N., et al. (2009) Cis-Regulatory Changes at FLOWERING LOCUS T Mediate Natural Variation in Flowering Responses of Arabidopsis thaliana. Genetics, 183, 723-732.
https://doi.org/10.1534/genetics.109.104984
[64]  Liu, L., Adrian, J., Pankin, A., et al. (2014) Induced and Natural Variation of Promoter Length Modulates the Photoperiodic Response of FLOWERING LOCUS T. Nature Communicayions, 5, Article No. 4558.
https://doi.org/10.1038/ncomms5558
[65]  Jin, S., Jung, H.S., Chung, K.S., et al. (2015) FLOWERING LOCUS T Has Higher Protein Mobility than TWIN SISTER OF FT. Journal of Experimental Botany, 66, 6109-6117.
https://doi.org/10.1093/jxb/erv326
[66]  Carvalho, A. and Krug, C.A. (1952) Genetica de Coffea XV-Hereditariedade dos caracteristicos principais de Coffea arabica L. var. Semperflorens K.M.C. Bragantia, 12, 163-170.
https://doi.org/10.1590/S0006-87051952000200005
[67]  Antunes, C.S.N. (1960) Melhoramento do cafeeiro: XIX-Pesquisas sobre o cafe Semperflorens. Bragantia, 19, 1011-1040.
https://doi.org/10.1590/S0006-87051960000100061
[68]  Michaels, S.D. and Amasino, R.M. (1999) FLOWERING LOCUS C Encodes a Novel MADS Domain Protein That Acts as a Repressor of Flowering. Plant Cell, 11, 949-956.
https://doi.org/10.1105/tpc.11.5.949
[69]  Helliwell, C.A., Wood, C.C., Robertson, M., et al. (2006) The Arabidopsis FLC Protein Interacts Directly in Vivo with SOC1 and FT Chromatin and Is Part of a High-Molecular-Weight Protein Complex. The Plant Journal for Cell and Molecular Biology, 46, 183-192.
https://doi.org/10.1111/j.1365-313X.2006.02686.x
[70]  Li, Z., Ou, Y., Zhang, Z., et al. (2018) Brassinosteroid Signaling Recruits Histone 3 Lysine-27 Demethylation Activity to FLOWERING LOCUS C Chromatin to Inhibit the Floral Transition in Arabidopsis. Molecular Plant, 11, 1135-1146.
https://doi.org/10.1016/j.molp.2018.06.007
[71]  Levy, Y.Y., Mesnage, S., Mylne, J.S., et al. (2002) Multiple Roles of Arabidopsis VRN1 in Vernalization and Flowering Time Control. Science, 297, 243-246.
https://doi.org/10.1126/science.1072147
[72]  Bastow, R., Mylne, J.S., Lister, C., et al. (2004) Vernalization Requires Epigenetic Silencing of FLC by Histone Methylation. Nature, 427, 164-167.
https://doi.org/10.1038/nature02269
[73]  Sung, S. and Amasino, R.M. (2005) Remembering Winter: Toward a Molecular Understanding of Vernalization. Annual Review of Plant Biology, 56, 491-508.
https://doi.org/10.1146/annurev.arplant.56.032604.144307
[74]  Finnegan, E.J. and Dennis, E.S. (2007) Vernalization-Induced Trimethylation of Histone H3 Lysine 27 at FLC Is Not Maintained in Mitotically Quiescent Cells. Current Biology, 17, 1978-1983.
https://doi.org/10.1016/j.cub.2007.10.026
[75]  Fiedler, M., Franco-Echevarria, E., Schulten, A., et al. (2022) Head-to-Tail Polymerization by VEL Proteins Underpins Cold Induced Polycomb Silencing in Flowering Control. Cell Reports, 41, Article 111607.
https://doi.org/10.1016/j.celrep.2022.111607
[76]  Kyung, J., Jeon, M. and Lee, I. (2022) Recent Advances in the Chromatin-Based Mechanism of FLOWERING LOCUS C Repression through Autonomous Pathway Genes. Frontiers in Plant Science, 13, Article 964931.
https://doi.org/10.3389/fpls.2022.964931
[77]  Sun, B., Bhati, K.K., Song, P., et al. (2022) FIONA1-Mediated Methylation of the 3’ UTR of FLC Affects FLC Transcript Levels and Flowering in Arabidopsis. PLOS GENETICS, 18, 1-22.
https://doi.org/10.1371/journal.pgen.1010386
[78]  Rhee, S.Y., Beavis, W., Berardini, T.Z., et al. (2003) The Arabidopsis Information Resource TAIR: A Model Organism Database Providing a Centralized, Curated Gateway to Arabidopsis Biology, Research Materials and Community. Nucleic Acids Research, 31, 224-228.
https://doi.org/10.1093/nar/gkg076
[79]  Lutz, U., Pose, D., Pfeifer, M., et al. (2015) Modulation of Ambient Temperature-Dependent Flowering in Arabidopsis thaliana by Natural Variation of FLOWERING LOCUS M. PLOS GENETICS, 11, e1005588.
https://doi.org/10.1371/journal.pgen.1005588
[80]  Lee, K.C., Lee, H.T., Jeong, H.H., et al. (2022) The Splicing Factor 1-FLOWERING LOCUS M Module Spatially Regulates Temperature-Dependent Flowering by Modulating FLOWERING LOCUS T and LEAFY Expression. Plant Cell Reports, 41, 1603-1612.
https://doi.org/10.1007/s00299-022-02881-y
[81]  Zhao, Z., Dent, C., Liang, H., et al. (2022) CRY2 Interacts with CIS1 to Regulate Thermosensory Flowering via FLM Alternative Splicing. Nature Communications, 13, Article No. 7045.
https://doi.org/10.1038/s41467-022-34886-2
[82]  Xinchen, L., Xiaolin, Z., Hongmiao, H., et al. (2021) Structural Insights into the Multivalent Binding of the Arabidopsis FLOWERING LOCUS T Promoter by the CO-NF-Y Master Transcription Factor Complex. The Plant Cell, 33, 1182-1195.
https://doi.org/10.1093/plcell/koab016
[83]  Dahal, P., Kwon, E. and Pathak, D. (2022) Crystal Structure of a Tandem B-box Domain from Arabidopsis CONSTANS. Biochemical and Biophysical Research Communications, 599, 38-42.
https://doi.org/10.1016/j.bbrc.2022.02.025
[84]  Gil, K., Park, M., Lee, H., et al. (2017) Alternative Splicing Provides a Proactive Mechanism for the Diurnal CONSTANS Dynamics in Arabidopsis Photoperiodic Flowering. The Plant Journal, 89, 128-140.
https://doi.org/10.1111/tpj.13351
[85]  Hayama, R., Sarid-Krebs, L., Richter, R., et al. (2017) PSEUDO RESPONSE REGULATORs Stabilize CONSTANS Protein to Promote Flowering in Response to Day-Length. The EMBO Journal, 36, 904-918.
https://doi.org/10.15252/embj.201693907
[86]  Lee, N., Ozaki, Y., Hempton, A.K., et al. (2023) The FLOWERING LOCUS T Gene Expression Is Controlled by High-Irradiance Response and External Coincidence Mechanism in Long Days in Arabidopsis. New Phytologist, 239, 208-221.
https://doi.org/10.1111/nph.18932
[87]  Yoo, S.K., Chung, K.S., Kim, J., et al. (2023) CONSTANS Activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to Promote Flowering in Arabidopsis. Plant Physiology, 139, 770-778.
https://doi.org/10.1104/pp.105.066928
[88]  Liu, L., Li, C., Teo, Z.W.N., et al. (2005) Transient Activity of the Florigen Complex during the Floral Transition in Arabidopsis thaliana. Development, 146, dev171504.
[89]  Abe, M., Kosaka, S., Shibuta, M., et al. (2019) The MCTP-SNARE Complex Regulates Florigen Transport in Arabidopsis. The Plant Cell, 31, 2475-2490.
https://doi.org/10.1105/tpc.18.00960
[90]  Kobayashi, Y., Kaya, H., Goto, K., et al. (1999) A Pair of Related Genes with Antagonistic Roles in Mediating Flowering Signals. Science, 286, 1960-1962.
https://doi.org/10.1126/science.286.5446.1960
[91]  Wickland, D.P. and Hanzawa, Y. (2015) The FLOWERING LOCUS T/TERMINAL FLOWER1 Gene Family: Functional Evolution and Molecular Mechanisms. Molecular Plant, 8, 983-997.
https://doi.org/10.1016/j.molp.2015.01.007
[92]  Tiwari, S.B., Shen, Y., Chang, H-C., et al. (2010) The Flowering Time Regulator CONSTANS Is Recruited to the FLOWERING LOCUS T Promoter via a Unique cis-element. New Phytologist, 187, 57-66.
https://doi.org/10.1111/j.1469-8137.2010.03251.x
[93]  Rosas, U., Mei, Y., Xie, Q., et al. (2014) Variation in Arabidopsis Flowering Time Associated with cis-Regulatory Variation in CONSTANS. Nature Communications, 5, Article No. 3651.
https://doi.org/10.1038/ncomms4651
[94]  Bao, S., Hua, C., Huang, G., et al. (2019) Molecular Basis of Natural Variation in Photoperiodic Flowering Responses. Developmental Cell, 50, 90-101.E3.
https://doi.org/10.1016/j.devcel.2019.05.018
[95]  Song, Y.H., Kubota, A., Kwon, M.S., et al. (2018) Molecular Basis of Flowering under Natural Long-Day Conditions in Arabidopsis. Nature Plants, 4, 824-835.
https://doi.org/10.1038/s41477-018-0253-3
[96]  TAIR The Arabidopsis Information Resource.
http://www.arabidopsis.org
[97]  Dereeper, A., Bocs, S., Rouard, M., et al. (2015) The Coffee Genome Hub: A Resource for Coffee Genomes. Nucleic Acids Research, 43, D1028-D1035.
https://doi.org/10.1093/nar/gku1108
[98]  NCBI National Center of Biotechnology Information, USA.
http://www.ncbi.nlm.nih.gov/
[99]  Hall, T.A. (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.
[100]  Felsenstein, J. (2009) PHYLIP Phylogeny Inference Package (Version 3695). University of Washington.
https://csbf.stanford.edu/phylip/
[101]  Lashermes, P., Combes, M.C., Robert, J., et al. (1999) Molecular Characterization and Origin of the Coffea arabica L. Genome. Molecular and General Genetics MGG, 261, 259-266.
https://doi.org/10.1007/s004380050965
[102]  Higo, K., Ugawa, Y., Iwamoto, M., et al. (1998) PLACE: A Database of Plant cis-acting Regulatory DNA Elements. Nucleic Acids Research, 26, 358-359.
https://doi.org/10.1093/nar/26.1.358
[103]  Atamian, H.S. and Harmer, S.L. (2016) Circadian Regulation of Hormone Signaling and Plant Physiology. Plant Molecular Biology, 91, 691-702.
https://doi.org/10.1007/s11103-016-0477-4
[104]  Adrian, J., Farron, S., Reimer, J.J., et al. (2010) cis-regulatory Elements and Chromatin State Coordinately Control Temporal and Spatial Expression of FLOWERING LOCUS T in Arabidopsis. The Plant Cell, 22, 1425-1440.
https://doi.org/10.1105/tpc.110.074682
[105]  Nakaminami, K., Hill, K., Perry, S.E., et al. (2009) Arabidopsis Cold Shock Domain Proteins: Relationships to Floral and Silique Development. Journal of Experimental Botany, 60, 1047-1062.
https://doi.org/10.1093/jxb/ern351
[106]  Lee, I. and Amasino, R.M. (1995) Effect of Vernalization, Photoperiod and Light Quality on the Flowering Phenotype of Arabidopsis Plants Containing the FRIGIDA Gene. Plant Physiology, 108, 157-162.
https://doi.org/10.1104/pp.108.1.157
[107]  Lee, J., Yun, J.-Y., Zhao, W., et al. (2015) A Methyltransferase Required for Proper Timing of the Vernalization Response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 112, 2269-2274.
https://doi.org/10.1073/pnas.1423585112
[108]  Lee, C., Kim, S-J., Jin, S., et al. (2019) Genetic Interactions Reveal the Antagonistic Roles of FT/TSF and TFL1 in the Determination of Inflorescence Meristem Identity in Arabidopsis. The Plant Journal, 99, 452-464.
https://doi.org/10.1111/tpj.14335
[109]  Zhu, Y., Klasfeld, S., Jeong, C.W., et al. (2020) TERMINAL FLOWER 1-FD Complex Target Genes and Competition with FLOWERING LOCUS T. Nature Communications, 11, Article No. 5118.
https://doi.org/10.1038/s41467-020-18782-1
[110]  Luccioni, L., Krzymuski, M., Sanchez-Lamas, M., et al. (2019) CONSTANS Delays Arabidopsis Flowering under Short Days. The Plant Journal, 97, 923-932.
https://doi.org/10.1111/tpj.14171

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133