全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

如何在计算物理教学中融入人工智能的应用
How to Integrate the Application of Artificial Intelligence into Computational Physics Education

DOI: 10.12677/ae.2024.1471151, PP. 236-241

Keywords: 计算物理,人工智能,计算方法,智能优化,国际合作
Computational Physics
, Artificial Intelligence, Computational Methods, Training Artificial Intelligence, International Cooperation

Full-Text   Cite this paper   Add to My Lib

Abstract:

在全球人工智能的大背景下,随着数据科学和机器学习的融合,计算物理领域将越来越多地把数据科学和机器学习的方法应用于问题求解。通过数据驱动的方法和机器学习算法,计算物理可以更好地处理复杂的物理现象,并从大量的数据中提取有用的信息。如何在高校计算物理教学中融合人工智能是非常必要的,我们主要从三个方面展开指导学生熟悉计算物理中常用的计算方法;人工智能训练优化已有的计算方法;国际合作共建知识共享平台等,通过这三个方面使得计算物理与物理学、材料科学、化学和生物学等学科进行交叉与合作,共同解决复杂的科学和工程问题,推动技术创新和应用拓展。
In the context of global artificial intelligence, with the fusion of data science and machine learning, the field of computational physics will increasingly apply methods from data science and machine learning to problem-solving. Through data-driven approaches and machine learning algorithms, computational physics can better handle complex physical phenomena and extract useful information from large datasets. Integrating artificial intelligence into university-level computational physics education is highly necessary. We primarily focus on three aspects: guiding students to become familiar with commonly used computational methods in computational physics; training artificial intelligence to optimize existing computational methods; and fostering international cooperation to build knowledge-sharing platforms. Through these three aspects, computational physics can engage in cross-disciplinary collaboration with physics, materials science, chemistry, biology, and other fields, jointly addressing complex scientific and engineering problems, and promoting technological innovation and application expansion.

References

[1]  Thijssen, J. (2007) Computational Physics. Cambridge University Press.
https://doi.org/10.1017/CBO9781139171397
[2]  Landau, R.H., Páez, M.J. and Bordeianu, C.C. (2015) Computational Physics: Problem Solving with Python. John Wiley & Sons.
[3]  国务院. 国务院关于印发新一代人工智能发展规划的通知[EB/OL].
https://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm, 2024-05-15.
[4]  中华人民共和国教育部. 教育部关于印发《高等学校人工智能创新行动计划》的通知[EB/OL].
http://www.moe.gov.cn/srcsite/A16/s7062/201804/t20180410_332722.html, 2024-05-15.
[5]  余胜泉, 卢宇, 陈晨. 人工智能 + 教育蓝皮书[M]. 北京: 北京师范大学出版社, 2020.
[6]  刘勇, 徐佳慧, 董跃武, 苏福根. 高等教育中如何应用ChatGPT类生成式人工智能——联合国教科文组织《高等教育中的ChatGPT和人工智能: 快速入门指南》解析[J]. 中国教育信息化, 2024, 30(2): 71-80.
[7]  郑永和, 周丹华, 张永和, 等. 计算教育学视域下的ChatGPT: 内涵、主题、反思与挑战[J]. 华东师范大学学报(教育科学版), 2023, 41(7): 91-102.
[8]  刘向永, 鲁晓燕. 合理开展ChatGPT教学应用的思考与实践[J]. 教育视界, 2023(17): 11-14.
[9]  崔宇红, 白帆, 张蕊芯. ChatGPT在高等教育领域的应用、风险及应对[J]. 重庆理工大学学报(社会科学), 2023, 37(5): 16-25.
[10]  吴青, 刘毓文. ChatGPT时代的高等教育应对: 禁止还是变革[J]. 高校教育管理, 2023, 17(3): 32-41.
[11]  Lamb, R.L., Vallett, D.B., Akmal, T., et al. (2014) A Computational Modeling of Student Cognitive Processes in Science Education. Computers & Education, 79, 116-125.
https://doi.org/10.1016/j.compedu.2014.07.014
[12]  Krajcik, J.S. (2021) Commentary-Applying Machine Learning in Science Assessment: Opportunity and Challenges. Journal of Science Education and Technology, 30, 313-318.
https://doi.org/10.1007/s10956-021-09902-7
[13]  Maestrales, S., Zhai X., Touitou, I., et al. (2021) Using Machine Learning to Score Multi-Dimensional Assessments of Chemistry and Physics. Journal of Science Education and Technology, 30, 239-254.
https://doi.org/10.1007/s10956-020-09895-9
[14]  Jiang, X.W., Li, Z.X., Wang, L., et al. (2024) The Connotation and Key Research Areas of the New Application Code “Computational Physics” of the National Natural Science Foundation of China. Scientia Sinica Physica, Mechanica & Astronomica, 54, Article ID: 247102.
https://doi.org/10.1360/SSPMA-2024-0012
[15]  Xiang, T. (2017) Tensor Network States in Condensed Matter Physics. Cambridge University Press.
[16]  Wang, Y., Lv, J., Zhu, L. and Ma, Y. (2010) CALYPSO: A Method for Crystal Structure Prediction. Computer Physics Communications, 181, 2106-2117.
[17]  Zhao, J. and Han, K. (2014) Excited-State Molecular Dynamics: Methods, Theory and Applications. Chemical Society Reviews, 43, 4985-5001.
[18]  Landau, D.P. and Binder, K. (1980) A New Monte Carlo Method for Studying Phase Transitions. Physical Review B, 20, 2467-2476.
[19]  Landau, D.P. and Binder, K. (1981) Scaling Theory and Monte Carlo Simulation of Statistical Mechanics Systems. Physical Review B, 24, 1391-1402.
https://doi.org/10.1103/PhysRevB.24.1391
[20]  Stroud, D. and Mochán, W.L. (2004) Quantum Information Processing with Superconducting Qubits. Reports on Progress in Physics, 67, Article No. 1.
[21]  Stroud, D. (2001) The Physics of Mesoscopic Systems. Cambridge University Press.
[22]  Stroud, D. and Mochán, W.L. (1999) Quantum Information Processing with Josephson Charge Qubits. Physical Review Letters, 82, 2572-2575.
[23]  Voth, G.A. (2008) Coarse-Graining of Condensed Phase and Biomolecular Systems. CRC Press.
https://doi.org/10.1201/9781420059564
[24]  Omnes, R. (1999) Understanding Quantum Mechanics. Princeton University Press.
[25]  Omnes, R. (1992) Consistent Interpretations of Quantum Mechanics. Reviews of Modern Physics, 64, 339-382.
https://doi.org/10.1103/RevModPhys.64.339

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133