全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effectiveness of Chromated Copper Arsenate against Deteriorating Agents of Eucalyptus Poles and Posts in Four Eco-Regions in Kenya

DOI: 10.4236/ojf.2024.143016, PP. 281-296

Keywords: Wood Deteriorating Agents, CCA, Transmission Poles, Wood-Decay Fungi

Full-Text   Cite this paper   Add to My Lib

Abstract:

Previous studies done elsewhere have shown that Eucalyptus poles treated with chromated copper arsenate (CCA) can last over 30 years. Kenya is exceptional because in some eco-regions, the Eucalyptus poles’ life span has greatly reduced to 5 years. The current study was designed to evaluate wood deteriorating agents of CCA-treated Eucalyptus poles and variability in four eco-regions of Kenya, namely, dryland, coastal, highland and humid lake. A total of 360 Eucalyptus pole samples were used for this experiment. Three CCA treatments were used to treat transmission poles at 20 kg/cm3 fencing posts samples at 6 kg/cm3, and a control group. Results indicated that termites and wood-decay fungi attacks caused wood deterioration in the four eco-regions. The proportion of power transmission pole degradation by wood deteriorating agents varied across eco-regions, between treatments and control and between time after treatments. Dryland eco-regions had the highest termite-related degradation (41.82%) while wood-decay fungi attack was highest in the highland eco-regions (9.20%). Samples treated with 6 kg/cm3 recorded the lowest level of wood deterioration, manifested by minimal superficial termite and wood-decay fungi attack. Samples treated with 20 kg/cm3 were characterized by moderate termite and wood-decay fungi attacks observed around the heartwood region, unlike sapwood. This study concluded that the deterioration of Eucalyptus CCA-treated poles is a question of climatic variability and hence, to increase the poles’ lifespan, CCA treatment should be tailored according to the characteristics of the ecoregion of use. Further investigations will inform the diversity of termites and decay-fungi across different eco-regions.

References

[1]  Andlar, M., Rezić, T., Marđetko, N., Kracher, D., Ludwig, R., & Šantek, B. (2018). Lignocellulose Degradation: An Overview of Fungi and Fungal Enzymes Involved in Lignocellulose Degradation. Engineering in Life Sciences, 18, 768-778.
https://doi.org/10.1002/elsc.201800039
[2]  Bentz, B. J., Jönsson, A. M., Schroeder, M., Weed, A., Wilcke, R. A. I., & Larsson, K. (2019). Ips typographus and Dendroctonus ponderosae Models Project Thermal Suitability for Intra-and Inter-Continental Establishment in a Changing Climate. Frontiers in Forests and Global Change, 2, Article No. 1.
https://doi.org/10.3389/ffgc.2019.00001
[3]  Brischke, C., & Thelandersson, S. (2014). Modelling the Outdoor Performance of Wood Products—A Review on Existing Approaches. Construction and Building Materials, 66, 384-397.
https://doi.org/10.1016/j.conbuildmat.2014.05.087
[4]  CEN (2015). EN 252: Field Test Method for Determining the Relative Protective Effectiveness of a Wood Preservative in Ground Contact. European Committee for Standardization.
[5]  Chen, A. Y. Y., & Olsen, T. (2016). Chromated Copper Arsenate-Treated Wood: A Potential Source of Arsenic Exposure and Toxicity in Dermatology. International Journal of Women’s Dermatology, 2, 8-30.
https://doi.org/10.1016/j.ijwd.2016.01.002
[6]  Clausen, C. A. (2010). Wood Handbook. General Technical Report FPL-GTR 190.
[7]  Cornelissen, J. H., Sass-Klaassen, U., Poorter, L., van Geffen, K., van Logtestijn, R. S., van Hal, J., & Hefting, M. M. (2012). Controls on Coarse Wood Decay in Temperate Tree Species: Birth of the LOGLIFE Experiment. Ambio, 41, 231-245.
https://doi.org/10.1007/s13280-012-0304-3
[8]  Edlund, M.-L., & Nilsson, T. (1998) Testing the Durability of Wood. Material and Structures, 31, 641-647.
https://doi.org/10.1007/BF02480616
[9]  Edman, M., Hagos, S., & Fredrik, C. (2021). Warming Effects on Wood Decomposition Depend on Fungal Assembly History. Journal of Ecology, 109, 1919-1930.
https://doi.org/10.1111/1365-2745.13617
[10]  Gelbrich, J. (2009) Chapter 1. Introduction. In J. Gelbrich (Ed.), Bacterial Wood Degradation—A Study of Chemical Changes in Wood and Growth Conditions of Bacteria (pp. 135-138). Sierke Verlag.
[11]  Goodell, B. (2001). Wood Products: Deterioration by Insects and Marine Organisms. In K. H. Jürgen Buschow, et al. (Eds.), Encyclopedia of Materials: Science and Technology (pp. 9696-9701). Elsevier.
https://doi.org/10.1016/B0-08-043152-6/01760-5
[12]  Hietala, A. M., Stefańczyk, E., Nagy, N. E., Fossdal, C. G., & Alfredsen, G. (2014). Influence of Wood Durability on the Suppressive Effect of Increased Temperature on Wood Decay by the Brown-Rot Fungus Postia placenta. Holzforschung, 68, 123-131.
https://doi.org/10.1515/hf-2012-0157
[13]  Hill, C. A. (2007). Wood Modification: Chemical, Thermal and Other Processes. John Wiley & Sons.
https://doi.org/10.1002/0470021748
[14]  Hillis, W. E. (2012). Heartwood and Tree Exudates (Vol. 4). Springer Science & Business Media.
[15]  Juan, A. M., & Rosana, L. (2023). Biological Deterioration and Natural Durability of Wood in Europe. Forests, 14, Article No. 283.
https://doi.org/10.3390/f14020283
[16]  Kandasamy, D., Gershenzon, J., & Hammerbacher, A. (2016). Volatile Organic Compounds Emitted by Fungal Associates of Conifer Bark Beetles and Their Potential in Bark Beetle Control. Journal of Chemical Ecology, 42, 952-969.
https://doi.org/10.1007/s10886-016-0768-x
[17]  Lebow, S., Williams, R. S., & Lebow, P. (2003). Effect of Simulated Rainfall and Weathering on Release of Preservative Elements from CCA Treated Wood. Environmental Science & Technology, 37, 4077-4082.
https://doi.org/10.1021/es0343048
[18]  Liu, D., Liu, G., Chen, L., Wang, J., & Zhang, L. (2018). Soil pH Determines Fungal Diversity along an Elevation Gradient in Southwestern China. Science China Life Sciences, 61, 718-726.
https://doi.org/10.1007/s11427-017-9200-1
[19]  Marais, B. N., Brischke, C., & Militz, H. (2022). Wood Durability in Terrestrial and Aquatic Environments—A Review of Biotic and Abiotic Influence Factors. Wood Material Science & Engineering, 17, 82-105.
https://doi.org/10.1080/17480272.2020.1779810
[20]  Martín, J. A., & López, R. (2023). Biological Deterioration and Natural Durability of Wood in Europe. Forests, 14, Article No. 283.
https://doi.org/10.3390/f14020283
[21]  Mazela, B., & Popescu, C.-M. (2017). Solid Wood. In D. Jones, & C. Brischke (Eds.), Performance of Bio-Based Building Materials (pp. 22-39). Elsevier.
[22]  McAvoy, T. J., Régnière, J., St-Amant, R., Schneeberger, N., & Salom, S. (2017). Mortality and Recovery of Hemlock Woolly Adelgid (Adelges tsugae) in Response to Winter Temperatures and Predictions for the Future. Forests, 8, Article No. 497.
https://doi.org/10.3390/f8120497
[23]  Muthike, G., & Ali, G. (2021). Concrete vs Wooden Poles: Effects of the Shift to Concrete Poles on Tree Growers.
https://www.kefri.org/assets/publications/articles/CONCRETE%20VS%20WOODEN%20POLES.pdf
[24]  Oberst, S., Lenz, M., Lai, J. C., & Evans, T. A. (2019). Termites Manipulate Moisture Content of Wood to Maximize Foraging Resources. Biology Letters, 15, Article ID: 20190365.
https://doi.org/10.1098/rsbl.2019.0365
[25]  Palin, O. F., Eggleton, P., Malhi, Y., Girardin, C. A., Rozas-Dávila, A., & Parr, C. L. (2011). Termite Diversity along an Amazon-Andes Elevation Gradient, Peru. Biotropica, 43, 100-107.
https://doi.org/10.1111/j.1744-7429.2010.00650.x
[26]  R Core Team (2022). Rs: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
https://www.R-project.org/
[27]  Reinprecht, L. (2016). Biological Degradation of Wood. In Wood Deterioration, Protection and Maintenance (pp. 62-125). John Wiley & Sons, Ltd.
https://doi.org/10.1002/9781119106500.ch3
[28]  Rodríguez-Barreal, J. A. (1998). Patología de La Madera. Fundación Conde del Valle de Salazar, Ediciones Mundiprensa.
[29]  Schultz, T. P., & Nicholas, D. D. (2002). Development of Environmentally-Benign Wood Preservatives Based on the Combination of Organic Biocides with Antioxidants and Metal Chelators. Phytochemistry, 61, 555-560.
https://doi.org/10.1016/S0031-9422(02)00267-4
[30]  Schultz, T. P., Nicholas, D. D., & Preston, A. F. (2007). A Brief Review of the Past, Present and Future of Wood Preservation. Pest Management Science, 63, 784-788.
https://doi.org/10.1002/ps.1386
[31]  Sreedevi, K., Sree Chandana, P., Correya, J. C., Shashank, P. R., Singh, S., & Veenakumari, K. (2022). Economically Important Wood Feeding Insects: Their Diversity, Damage and Diagnostics. In Science of Wood Degradation and Its Protection (pp. 115-145). Springer.
https://doi.org/10.1007/978-981-16-8797-6_4
[32]  Taylor, A. M., Gartner, B. L., & Morrell, J. J. (2002). Heartwood Formation and Natural Durability—A Review. Wood and Fiber Science, 34, 587-611.
[33]  Ulyshen, M. D. (2016). Wood Decomposition as Influenced by Invertebrates. Biological Reviews, 91, 70-85.
https://doi.org/10.1111/brv.12158
[34]  Verbist, M., Nunes, L., Jones, D., & Branco, J. M. (2019). Service Life Design of Timber Structures. In B. Ghiassi, & P. B. Lourenco (Eds.), Long-Term Performance and Durability of Masonry Structures (pp. 311-336). Woodhead Publishing.
https://doi.org/10.1016/B978-0-08-102110-1.00011-X
[35]  Wang, J. Z., & De Groot, R. (1996). Treatability and Durability of Heartwood. In National Conference on Wood Transportation Structures (pp. 252-260). US Forest Service, Forest Products Laboratory; Federal Highway Administration (No. FPL-GTR-94).
[36]  Wijas, B. J., Flores-Moreno, H., Allison, S. D., Rodriguez, L. C., Cheesman, A. W., Cernusak, L. A. et al. (2024). Drivers of Wood Decay in Tropical Ecosystems: Termites versus Microbes along Spatial, Temporal and Experimental Precipitation Gradients. Functional Ecology, 38, 546-559.
https://doi.org/10.1111/1365-2435.14494
[37]  Williams, R. S., Lebow, S., & Lebow, P. (2003). Effect of Weathering on Chromated Copper Arsenate (CCA) Treated Wood: Leaching of Metal Salts and Change in Water Repellency. In Ninety-Ninth Annual Meeting of the American Wood-Preservers’ Association (pp. 125-141, Vol. 99). American Wood-Preservers’ Association.
[38]  Woodpress.com. Care for Cultural Material-Wood.
https://careforwood.wordpress.com/biological-degradation
[39]  Zhu, H., Luo, W., Ciesielski, P. N., Fang, Z., Zhu, J. Y., Henriksson, G., Himmel, M. E., & Hu, L. (2016). Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews, 116, 9305-9374.
https://doi.org/10.1021/acs.chemrev.6b00225

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133