We develop a theory of cosmology, which is not based on the cosmological principle. We achieve this without violating the Copernican principle. It is well known that the gravitational redshift associated with the Schwarzschild solution applied to the distant supernova does not lead to the observed redsift-distance relationship. We show, however, that generalizations of the Schwarzschild metric, the Taub-NUT metrics, do indeed lead to the observed redshift-distance relationship and to the observed time dilation. These universes are not expanding rather the observed cosmological redshift is due to the gravitational redshift associated with these solutions. Time dilation in these stationary universes has the same dependency on redshift that generally has been seen as proof that space is expanding. Our theory resolves the Hubble tension.
References
[1]
Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. Annalen der Physik, 322, 891-921. https://doi.org/10.1002/andp.19053221004
[2]
Kristian, J. and Sachs, R.K. (1966) Observations in Cosmology. The Astrophysical Journal, 143, 379. https://doi.org/10.1086/148522
[3]
Ellis, G.F.R. (1975) Cosmology and Verifiability. Quarterly Journal of the Royal Astronomical Society, 16, 245-264.
[4]
Dautcourt, G. (1983) The Cosmological Problem as Initial Value Problem on the Observer’s Past Light Cone: Geometry. Journal of Physics A: Mathematical and General, 16, 3507-3528. https://doi.org/10.1088/0305-4470/16/15/016
[5]
Ellis, G.F.R., Nel, S.D., Maartens, R., Stoeger, W.R. and Whitman, A.P. (1985) Ideal Observational Cosmology. Physics Reports, 124, 315-417. https://doi.org/10.1016/0370-1573(85)90030-4
[6]
Pascual-Sánchez, J.-F. (1999) Cosmic Acceleration: Inhomogeneity versus Vacuum Energy. Modern Physics Letters A, 14, 1539-1544. https://doi.org/10.1142/s0217732399001632
[7]
Maartens, R. (2011) Is the Universe Homogeneous? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 5115-5137. https://doi.org/10.1098/rsta.2011.0289
[8]
Krasiński, A. (1998) Physics and Cosmology in an Inhomogeneous Universe. In: Sato, H. and Sugiyama, N., Eds., Frontiers Science Series 23: Black Holes and High Energy Astrophysics, Universal Academic Press, 133.
[9]
Ribeiro, M.B. (1995) Observations in the Einstein-De Sitter Cosmology: Dust Statistics and Limits of Apparent Homogeneity. The Astrophysical Journal, 441, 477. https://doi.org/10.1086/175374
[10]
Clowes, R.G. and Campusano, L.E. (1991) A 100-200 Mpc Group of Quasars. Monthly Notices of the Royal Astronomical Society, 249, 218-226. https://doi.org/10.1093/mnras/249.2.218
[11]
Gott III, J.R., Jurić, M., Schlegel, D., Hoyle, F., Vogeley, M., Tegmark, M., et al. (2005) A Map of the Universe. The Astrophysical Journal, 624, 463-484. https://doi.org/10.1086/428890
[12]
Clowes, R.G., Campusano, L.E., Graham, M.J. and Söchting, I.K. (2011) Two Close Large Quasar Groups of Size ∼ 350 Mpc at z ∼ 1.2. Monthly Notices of the Royal Astronomical Society, 419, 556-565. https://doi.org/10.1111/j.1365-2966.2011.19719.x
[13]
Clowes, R.G., Harris, K.A., Raghunathan, S., Campusano, L.E., Söchting, I.K. and Graham, M.J. (2013) A Structure in the Early Universe at Z ∼ 1.3 That Exceeds the Homogeneity Scale of the R-W Concordance Cosmology. Monthly Notices of the Royal Astronomical Society, 429, 2910-2916. https://doi.org/10.1093/mnras/sts497
[14]
Horvath, I., Hakkila, J. and Bagoly, Z. (2013) The Largest Structure of the Universe, Defined by Gamma-Ray Bursts.
[15]
Horváth, I., Hakkila, J. and Bagoly, Z. (2014) Possible Structure in the GRB Sky Distribution at Redshift Two. Astronomy & Astrophysics, 561, L12. https://doi.org/10.1051/0004-6361/201323020
[16]
Horváth, I., Bagoly, Z., Hakkila, J. and Tóth, L.V. (2015) New Data Support the Existence of the Hercules-Corona Borealis Great Wall. Astronomy & Astrophysics, 584, A48. https://doi.org/10.1051/0004-6361/201424829
[17]
Secrest, N.J., Hausegger, S.v., Rameez, M., Mohayaee, R., Sarkar, S. and Colin, J. (2021) A Test of the Cosmological Principle with Quasars. The Astrophysical Journal Letters, 908, L51. https://doi.org/10.3847/2041-8213/abdd40
[18]
Lopez, A.M., Clowes, R.G. and Williger, G.M. (2022) A Giant Arc on the Sky. Monthly Notices of the Royal Astronomical Society, 516, 1557-1572. https://doi.org/10.1093/mnras/stac2204
[19]
Lopez, A.M., Clowes, R.G. and Williger, G.M. (2024) A Big Ring on the Sky.
[20]
Migkas, K., Schellenberger, G., Reiprich, T.H., Pacaud, F., Ramos-Ceja, M.E. and Lovisari, L. (2020) Probing Cosmic Isotropy with a New X-Ray Galaxy Cluster Sample through the Lx-T Scaling Relation. Astronomy & Astrophysics, 636, A15. https://doi.org/10.1051/0004-6361/201936602
[21]
Javanmardi, B., Porciani, C., Kroupa, P. and Pflamm-Altenburg, J. (2015) Probing the Isotropy of Cosmic Acceleration Traced by Type Ia Supernovae. The Astrophysical Journal, 810, 47. https://doi.org/10.1088/0004-637x/810/1/47
[22]
Perlmutter, S., Aldering, G., Valle, M.D., Deustua, S., Ellis, R.S., Fabbro, S., et al. (1998) Discovery of a Supernova Explosion at Half the Age of the Universe. Nature, 391, 51-54. https://doi.org/10.1038/34124
[23]
Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038. https://doi.org/10.1086/300499
[24]
Fliessbach, T. (2006) Allgemeine Relativitätstheorie.
[25]
Moffat, J.W. and Tatarski, D.C. (1992) Redshift and Structure Formation in a Spatially Flat Inhomogeneous Universe. Physical Review D, 45, 3512-3522. https://doi.org/10.1103/physrevd.45.3512
[26]
Moffat, J.W. and Tatarski, D.C. (1995) Cosmological Observations in a Local Void. The Astrophysical Journal, 453, 17. https://doi.org/10.1086/176365
[27]
Mustapha, N., Hellaby, C. and Ellis, G.F.R. (1997) Large-Scale Inhomogeneity versus Source Evolution: Can We Distinguish Them Observationally? Monthly Notices of the Royal Astronomical Society, 292, 817-830. https://doi.org/10.1093/mnras/292.4.817
[28]
Célérier, M.-N. (2000) Do We Really See a Cosmological Constant in the Supernovae Data? Astronomy & Astrophysics, 353, 63-71.
[29]
Tomita, K. (2001) A Local Void and the Accelerating Universe. Monthly Notices of the Royal Astronomical Society, 326, 287-292. https://doi.org/10.1046/j.1365-8711.2001.04597.x
[30]
Iguchi, H., Nakamura, T. and Nakao, K.-. (2002) Is Dark Energy the Only Solution to the Apparent Acceleration of the Present Universe? Progress of Theoretical Physics, 108, 809-818. https://doi.org/10.1143/ptp.108.809
[31]
Moffat, J.W. (2005) Cosmic Microwave Background, Accelerating Universe and Inhomogeneous Cosmology. Journal of Cosmology and Astroparticle Physics, 2005, Article No. 12. https://doi.org/10.1088/1475-7516/2005/10/012
[32]
Alnes, H., Amarzguioui, M. and Grøn, Ø. (2006) Inhomogeneous Alternative to Dark Energy? Physical Review D, 73, Article ID: 083519. https://doi.org/10.1103/physrevd.73.083519
[33]
Alnes, H. and Amarzguioui, M. (2006) CMB Anisotropies Seen by an Off-Center Observer in a Spherically Symmetric Inhomogeneous Universe. Physical Review D, 74, Article ID: 103520. https://doi.org/10.1103/physrevd.74.103520
[34]
Celerier, M.-N. (2006) Accelerated-Like Expansion: Inhomogeneities versus Dark Energy.
[35]
Vanderveld, R.A., Flanagan, É.É. and Wasserman, I. (2006) Mimicking Dark Energy with Lemaître-Tolman-Bondi Models: Weak Central Singularities and Critical Points. Physical Review D, 74, Article ID: 023506. https://doi.org/10.1103/physrevd.74.023506
[36]
Chung, D.J.H. and Romano, A.E. (2006) Mapping Luminosity-Redshift Relationship to Lemaitre-Tolman-Bondi Cosmology. Physical Review D, 74, Article ID: 103507. https://doi.org/10.1103/physrevd.74.103507
[37]
Alnes, H. and Amarzguioui, M. (2007) Supernova Hubble Diagram for Off-Center Observers in a Spherically Symmetric Inhomogeneous Universe. Physical Review D, 75, Article ID: 023506. https://doi.org/10.1103/physrevd.75.023506
[38]
Biswas, T., Mansouri, R. and Notari, A. (2007) Non-Linear Structure Formation and “Apparent” Acceleration: An Investigation. Journal of Cosmology and Astroparticle Physics, 2007, Article No. 17. https://doi.org/10.1088/1475-7516/2007/12/017
[39]
Céélérier, M.-N. (2007) Inhomogeneities in the Universe and the Fitting Problem.
[40]
Romano, A.E. (2007) Redshift Spherical Shell Energy in Isotropic Universes. Physical Review D, 76, Article ID: 103525. https://doi.org/10.1103/physrevd.76.103525
[41]
Yoo, C., Kai, T. and Nakao, K. (2008) Solving the Inverse Problem with Inhomogeneous Universes. Progress of Theoretical Physics, 120, 937-960. https://doi.org/10.1143/ptp.120.937
[42]
Garcia-Bellido, J. and Haugbølle, T. (2008) Confronting Lemaitre-Tolman-Bondi Models with Observational Cosmology. Journal of Cosmology and Astroparticle Physics, 2008, Article No. 3. https://doi.org/10.1088/1475-7516/2008/04/003
[43]
Zibin, J.P., Moss, A. and Scott, D. (2008) Can We Avoid Dark Energy? Physical Review Letters, 101, Article ID: 251303. https://doi.org/10.1103/physrevlett.101.251303
[44]
Clifton, T., Ferreira, P.G. and Land, K. (2008) Living in a Void: Testing the Copernican Principle with Distant Supernovae. Physical Review Letters, 101, Article ID: 131302. https://doi.org/10.1103/physrevlett.101.131302
[45]
Alexander, S., Biswas, T., Notari, A. and Vaid, D. (2009) Local Void vs Dark Energy: Confrontation with WMAP and Type Ia Supernovae. Journal of Cosmology and Astroparticle Physics, 2009, Article No. 25. https://doi.org/10.1088/1475-7516/2009/09/025
[46]
Bolejko, K. and Wyithe, J.S.B. (2009) Testing the Copernican Principle via Cosmological Observations. Journal of Cosmology and Astroparticle Physics, 2009, Article No. 20. https://doi.org/10.1088/1475-7516/2009/02/020
[47]
Clarkson, C., Clifton, T. and February, S. (2009) Perturbation Theory in Lemaȋtre-Tolman-Bondi Cosmology. Journal of Cosmology and Astroparticle Physics, 2009, Article No. 25. https://doi.org/10.1088/1475-7516/2009/06/025
[48]
Clifton, T., Ferreira, P.G. and Zuntz, J. (2009) What the Small Angle CMB Really Tells Us about the Curvature of the Universe. Journal of Cosmology and Astroparticle Physics, 2009, Article No. 29. https://doi.org/10.1088/1475-7516/2009/07/029
[49]
Krasiński, A., Hellaby, C., Bolejko, K. and Célérier, M. (2010) Imitating Accelerated Expansion of the Universe by Matter Inhomogeneities: Corrections of Some Misunderstandings. General Relativity and Gravitation, 42, 2453-2475. https://doi.org/10.1007/s10714-010-0993-5
[50]
February, S., Larena, J., Smith, M. and Clarkson, C. (2010) Rendering Dark Energy Void. Monthly Notices of the Royal Astronomical Society, 405, 2231-2242. https://doi.org/10.1111/j.1365-2966.2010.16627.x
[51]
Blomqvist, M. and Mörtsell, E. (2010) Supernovae as Seen by Off-Center Observers in a Local Void. Journal of Cosmology and Astroparticle Physics, 2010, Article No. 6. https://doi.org/10.1088/1475-7516/2010/05/006
[52]
Moffat, J.W. (2009) Void or Dark Energy?
[53]
Yoo, C., Nakao, K. and Sasaki, M. (2010) CMB Observations in LTB Universes: Part I. Matching Peak Positions in the CMB Spectrum. Journal of Cosmology and Astroparticle Physics, 2010, Article No. 12. https://doi.org/10.1088/1475-7516/2010/07/012
[54]
Romano, A.E. (2010) Can the Cosmological Constant Be Mimicked by Smooth Large-Scale Inhomogeneities for More than One Observable? Journal of Cosmology and Astroparticle Physics, 2010, Article No. 20. https://doi.org/10.1088/1475-7516/2010/05/020
[55]
Romano, A.E. (2010) Mimicking the Cosmological Constant for More than One Observable with Large Scale Inhomogeneities. Physical Review D, 82, Article ID: 123528. https://doi.org/10.1103/physrevd.82.123528
[56]
Romano, A.E. (2010) Testing Homogeneity with Galaxy Number Counts: Light-Cone Metric and General Low-Redshift Expansion for a Central Observer in a Matter Dominated Isotropic Universe without Cosmological Constant. Journal of Cosmology and Astroparticle Physics, 2010, Article No. 4. https://doi.org/10.1088/1475-7516/2010/01/004
[57]
Fosalba, P. and Gaztañaga, E. (2021) Explaining Cosmological Anisotropy: Evidence for Causal Horizons from CMB Data. Monthly Notices of the Royal Astronomical Society, 504, 5840-5862. https://doi.org/10.1093/mnras/stab1193
[58]
Aluri, P.K. and Patel, S.K. (2023) Examining Statistical Isotropy of CMB Low Multipoles from Planck PR4 Data. Physics Letters B, 836, Article ID: 137593. https://doi.org/10.1016/j.physletb.2022.137593
[59]
Gomes, L.G. (2024) Breaking the Cosmological Principle into Pieces: A Prelude to the Intrinsically Homogeneous and Isotropic Spacetimes. Classical and Quantum Gravity, 41, Article ID: 095004. https://doi.org/10.1088/1361-6382/ad3609
[60]
Riess, A.G., Breuval, L., Yuan, W., Casertano, S., Macri, L.M., Bowers, J.B., et al. (2022) Cluster Cepheids with High Precision Gaia Parallaxes, Low Zero-Point Uncertainties, and Hubble Space Telescope Photometry. The Astrophysical Journal, 938, 36. https://doi.org/10.3847/1538-4357/ac8f24
[61]
de Jaeger, T., Galbany, L., Riess, A.G., Stahl, B.E., Shappee, B.J., Filippenko, A.V., et al. (2022) A 5 per Cent Measurement of the Hubble-Lemaître Constant from Type II Supernovae. Monthly Notices of the Royal Astronomical Society, 514, 4620-4628. https://doi.org/10.1093/mnras/stac1661
Fields, B.D., Olive, K.A., Yeh, T. and Young, C. (2020) Big-Bang Nucleosynthesis after Planck. Journal of Cosmology and Astroparticle Physics, 2020, Article No. 10. https://doi.org/10.1088/1475-7516/2020/03/010
[64]
Abbott, T.M.C., Abdalla, F.B., Annis, J., Bechtol, K., Blazek, J., Benson, B.A., et al. (2018) Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data. Monthly Notices of the Royal Astronomical Society, 480, 3879-3888. https://doi.org/10.1093/mnras/sty1939
[65]
Riess, A.G., Casertano, S., Yuan, W., Bowers, J.B., Macri, L., Zinn, J.C., et al. (2021) Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with Λcdm. The Astrophysical Journal Letters, 908, L6. https://doi.org/10.3847/2041-8213/abdbaf
[66]
Freedman, W.L., Madore, B.F., Hatt, D., Hoyt, T.J., Jang, I.S., Beaton, R.L., et al. (2019) The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch. The Astrophysical Journal, 882, 34. https://doi.org/10.3847/1538-4357/ab2f73
[67]
Birrer, S. and Treu, T. (2021) TDCOSMO. V. Strategies for Precise and Accurate Measurements of the Hubble Constant with Strong Lensing. Astronomy & Astrophysics, 649, A61. https://doi.org/10.1051/0004-6361/202039179
[68]
Wong, K.C., Suyu, S.H., Chen, G.C., Rusu, C.E., Millon, M., Sluse, D., et al. (2019) H0LiCOW-XIII. A 2.4 per Cent Measurement of H0 from Lensed Quasars: 5.3σ Tension between Early-and Late-Universe Probes. Monthly Notices of the Royal Astronomical Society, 498, 1420-1439. https://doi.org/10.1093/mnras/stz3094
[69]
Schombert, J., McGaugh, S. and Lelli, F. (2020) Using the Baryonic Tully-Fisher Relation to Measure H0. The Astronomical Journal, 160, 71. https://doi.org/10.3847/1538-3881/ab9d88
[70]
Kourkchi, E., Tully, R.B., Eftekharzadeh, S., Llop, J., Courtois, H.M., Guinet, D., et al. (2020) Cosmicflows-4: The Catalog of ∼10,000 Tully-Fisher Distances. The Astrophysical Journal, 902, 145. https://doi.org/10.3847/1538-4357/abb66b
[71]
Soltis, J., Casertano, S. and Riess, A.G. (2021) The Parallax of ω Centauri Measured from Gaia EDR3 and a Direct, Geometric Calibration of the Tip of the Red Giant Branch and the Hubble Constant. The Astrophysical Journal Letters, 908, L5. https://doi.org/10.3847/2041-8213/abdbad
[72]
Blakeslee, J.P., Jensen, J.B., Ma, C., Milne, P.A. and Greene, J.E. (2021) The Hubble Constant from Infrared Surface Brightness Fluctuation Distances. The Astrophysical Journal, 911, 65. https://doi.org/10.3847/1538-4357/abe86a
[73]
Kim, Y.J., Kang, J., Lee, M.G. and Jang, I.S. (2020) Determination of the Local Hubble Constant from Virgo Infall Using TRGB Distances. The Astrophysical Journal, 905, 104. https://doi.org/10.3847/1538-4357/abbd97
[74]
Pesce, D.W., Braatz, J.A., Reid, M.J., Riess, A.G., Scolnic, D., Condon, J.J., et al. (2020) The Megamaser Cosmology Project. XIII. Combined Hubble Constant Constraints. The Astrophysical Journal Letters, 891, L1. https://doi.org/10.3847/2041-8213/ab75f0
[75]
Abbott, B.P., Abbott, R., Abbott, T.D., Abraham, S., Acernese, F., Ackley, K., et al. (2021) A Gravitational-Wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. The Astrophysical Journal, 909, 218.
[76]
De Felice, A., Mukohyama, S. and Pookkillath, M.C. (2021) Addressing H0 Tension by Means of VCDM. Physics Letters B, 816, Article ID: 136201. https://doi.org/10.1016/j.physletb.2021.136201
[77]
Hu, J.P. and Wang, F.Y. (2022) High-Redshift Cosmography: Application and Comparison with Different Methods. Astronomy & Astrophysics, 661, A71. https://doi.org/10.1051/0004-6361/202142162
[78]
Perivolaropoulos, L. and Skara, F. (2022) A Reanalysis of the Latest SH0ES Data for H0: Effects of New Degrees of Freedom on the Hubble Tension. Universe, 8, Article No. 502. https://doi.org/10.3390/universe8100502
[79]
Khetan, N., Izzo, L., Branchesi, M., Wojtak, R., Cantiello, M., Murugeshan, C., et al. (2021) A New Measurement of the Hubble Constant Using Type Ia Supernovae Calibrated with Surface Brightness Fluctuations. Astronomy & Astrophysics, 647, A72. https://doi.org/10.1051/0004-6361/202039196
[80]
Huang, C.D., Riess, A.G., Yuan, W., Macri, L.M., Zakamska, N.L., Casertano, S., et al. (2020) Hubble Space Telescope Observations of Mira Variables in the SN Ia Host NGC 1559: An Alternative Candle to Measure the Hubble Constant. The Astrophysical Journal, 889, 5. https://doi.org/10.3847/1538-4357/ab5dbd
[81]
Mörtsell, E., Goobar, A., Johansson, J. and Dhawan, S. (2022) The Hubble Tension Revisited: Additional Local Distance Ladder Uncertainties. The Astrophysical Journal, 935, 58. https://doi.org/10.3847/1538-4357/ac7c19
[82]
Wang, Y., Tang, S., Jin, Z. and Fan, Y. (2023) The Late Afterglow of GW170817/GRB 170817A: A Large Viewing Angle and the Shift of the Hubble Constant to a Value More Consistent with the Local Measurements. The Astrophysical Journal, 943, 13. https://doi.org/10.3847/1538-4357/aca96c
[83]
Huang, C.D., Yuan, W., Riess, A.G., Hack, W., Whitelock, P.A., Zakamska, N.L., et al. (2024) The Mira Distance to M101 and a 4% Measurement of H0. The Astrophysical Journal, 963, 83. https://doi.org/10.3847/1538-4357/ad1ff8
[84]
Perivolaropoulos, L. and Skara, F. (2022) Challenges for ΛCDM: An Update. New Astronomy Reviews, 95, Article ID: 101659. https://doi.org/10.1016/j.newar.2022.101659
[85]
Di Valentino, E., Anchordoqui, L.A., Akarsu, Ö., Ali-Haimoud, Y., Amen-dola, L., Arendse, N., et al. (2021) Cosmology Intertwined II: The Hubble Constant Tension. Astroparticle Physics, 131, Article ID: 102605.
[86]
Di Valentino, E. (2022) Challenges of the Standard Cosmological Model. Universe, 8, Article No. 399. https://doi.org/10.3390/universe8080399
[87]
Verde, L., Treu, T. and Riess, A.G. (2019) Tensions between the Early and Late Universe. Nature Astronomy, 3, 891-895. https://doi.org/10.1038/s41550-019-0902-0
[88]
Shah, P., Lemos, P. and Lahav, O. (2021) A Buyer’s Guide to the Hubble Constant. The Astronomy and Astrophysics Review, 29, Article No. 9. https://doi.org/10.1007/s00159-021-00137-4
[89]
Schmitz, K. (2022) Modern Cosmology, an Amuse-Gueule. In: Streit-Bianchi, M., Catapano, P., Galbiati, C. and Magnani, E., Eds., Advances in Cosmology: Science-Art-Philosophy, Springer International Publishing, 37-70.
[90]
Rezazadeh, K., Ashoorioon, A. and Grin, D. (2022) Cascading Dark Energy.
[91]
Addison, G.E. (2021) High H0 Values from CMB E-Mode Data: A Clue for Resolving the Hubble Tension? The Astrophysical Journal Letters, 912, L1. https://doi.org/10.3847/2041-8213/abf56e
[92]
Knox, L. and Millea, M. (2020) Hubble Constant Hunter’s Guide. Physical Review D, 101, Article ID: 043533. https://doi.org/10.1103/physrevd.101.043533
[93]
Kovács, A., Beck, R., Szapudi, I., Csabai, I., Rácz, G. and Dobos, L. (2020) A Common Explanation of the Hubble Tension and Anomalous Cold Spots in the Cmb. Monthly Notices of the Royal Astronomical Society, 499, 320-333. https://doi.org/10.1093/mnras/staa2631
[94]
Schöneberg, N., Lesgourgues, J. and Hooper, D.C. (2019) The BAO+BBN Take on the Hubble Tension. Journal of Cosmology and Astroparticle Physics, 2019, Article No. 29. https://doi.org/10.1088/1475-7516/2019/10/029
[95]
Buen-Abad, M.A., Chacko, Z., Kilic, C., Marques-Tavares, G. and Youn, T. (2023) Stepped Partially Acoustic Dark Matter, Large Scale Structure, and the Hubble Tension. Journal of High Energy Physics, 2023, Article No. 12. https://doi.org/10.1007/jhep06(2023)012
[96]
Murgia, R., Abellán, G.F. and Poulin, V. (2021) Early Dark Energy Resolution to the Hubble Tension in Light of Weak Lensing Surveys and Lensing Anomalies. Physical Review D, 103, Article ID: 063502. https://doi.org/10.1103/physrevd.103.063502
[97]
Vagnozzi, S. (2020) New Physics in Light of the H0 Tension: An Alternative View. Physical Review D, 102, Article ID: 023518. https://doi.org/10.1103/physrevd.102.023518
[98]
Abdalla, E., Abellán, G.F., Aboubrahim, A., Agnello, A., Akarsu, Ö., Akrami, Y., et al. (2022) Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies. Journal of High Energy Astrophysics, 34, 49-211. https://doi.org/10.1016/j.jheap.2022.04.002
[99]
Friedman, A. (1922) Über die Krümmung des Raumes. Zeitschrift für Physik, 10, 377-386. https://doi.org/10.1007/bf01332580
[100]
Lemaître, G. (1927) Un Univers homogène de masse constante et de rayon croissant rendant compte de la vitesse radiale des ńebuleuses extra-galactiques. Annales de la Société Scientifique de Bruxelles, 47, 49-59.
[101]
Hubble, E. (1929) A Relation between Distance and Radial Velocity among Extra-Galactic Nebulae. Proceedings of the National Academy of Sciences, 15, 168-173. https://doi.org/10.1073/pnas.15.3.168
[102]
Nussbaumer, H. and Bieri, L. (2009) Discovering the Expanding Universe.
[103]
van den Bergh, S. (2011) The Curious Case of Lemaître’s Equation No. 24. Journal of the Royal Astronomical Society of Canada, 105, 151-152.
[104]
Block, D.L. (2012) Georges Lemaître and Stigler’s Law of Eponymy. In: Astrophysics and Space Science Library, Springer, 89-96.
[105]
Reich, E.S. (2011) Edwin Hubble in Translation Trouble. Nature. https://doi.org/10.1038/news.2011.385
[106]
Way, M.J. (2013) Dismantling Hubble’s Legacy? In: Way, M.J. and Hunter, D., Eds., Origins of the Expanding Universe: 1912-1932, Astronomical Society of the Pacific Conference Series, vol. 471, 97.
[107]
de Sitter, W. (1916) On Einstein’s Theory of Gravitation and Its Astronomical Consequences. First Paper. Monthly Notices of the Royal Astronomical Society, 76, 699-728. https://doi.org/10.1093/mnras/76.9.699
[108]
Wirts, C. (1921) Einiges zur Statistik der Radialbewegungen von Spiralnebeln und Kugelsternhaufen. Astronomische Nachrichten, 215, 349-354. https://doi.org/10.1002/asna.19212151703
[109]
Humason, M.L. (1931) Apparent Velocity-Shifts in the Spectra of Faint Nebulae. The Astrophysical Journal, 74, 35. https://doi.org/10.1086/143287
[110]
Hubble, E. and Tolman, R.C. (1935) Two Methods of Investigating the Nature of the Nebular Redshift. The Astrophysical Journal, 82, 302. https://doi.org/10.1086/143682
[111]
Assis, A.K.T., Neves, M.C.D., Soares, D.S.L. (2009) Hubble’s Cosmology: From a Finite Expanding Universe to a Static Endless Universe. In: Potter, F., Ed., 2nd Crisis in Cosmology Conference, Astronomical Society of the Pacific Conference Series, Vol. 413, 255.
[112]
Assis, A.K.T. and Neves, M.C.D. (1995) The Redshift Revisited. Astrophysics and Space Science, 227, 13-24. https://doi.org/10.1007/bf00678063
[113]
Ellis, G.F.R., Maartens, R. and Nel, S.D. (1978) The Expansion of the Universe. Monthly Notices of the Royal Astronomical Society, 184, 439-465. https://doi.org/10.1093/mnras/184.3.439
[114]
Ellis, G.F.R. (1978) Is the Universe Expanding? General Relativity and Gravitation, 9, 87-94. https://doi.org/10.1007/bf00760145
[115]
Chastel, A.A. (1976) A Critical Analysis of the Explanation of Redshifts by a New Field. Astronomy and Astrophysics, 53, 67-82.
[116]
Chodorowski, M.J. (2007) Is Space Really Expanding? A Counterexample. Old and New Concepts of Physics, 4, 15-33. https://doi.org/10.2478/v10005-007-0002-2
[117]
Guth, A.H. (1981) Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Physical Review D, 23, 347-356. https://doi.org/10.1103/physrevd.23.347
[118]
Linde, A.D. (1982) A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Physics Letters B, 108, 389-393. https://doi.org/10.1016/0370-2693(82)91219-9
[119]
Tsujikawa, S. (2003) Introductory Review of Cosmic Inflation.
Penrose, R. (1989) Difficulties with Inflationary Cosmology. Annals of the New York Academy of Sciences, 571, 249-264. https://doi.org/10.1111/j.1749-6632.1989.tb50513.x
[122]
Petit, J. (1988) An Interpretation of Cosmological Model with Variable Light Velocity. Modern Physics Letters A, 3, 1527-1532. https://doi.org/10.1142/s0217732388001823
[123]
Midy, P. and Petit, J. (1999) Scale Invariant Cosmology. International Journal of Modern Physics D, 8, 271-289. https://doi.org/10.1142/s0218271899000213
[124]
Moffat, J.W. (1993) Superluminary Universe: A Possible Solution to the Initial Value Problem in Cosmology. International Journal of Modern Physics D, 2, 351-365. https://doi.org/10.1142/s0218271893000246
Albrecht, A. and Magueijo, J. (1999) Time Varying Speed of Light as a Solution to Cosmological Puzzles. Physical Review D, 59, Article ID: 043516. https://doi.org/10.1103/physrevd.59.043516
[127]
Gimenez, J.C. (2003) A Simple Cosmological Model with Decreasing Light Speed.
[128]
Fahr, H.J. and Zönnchen, J.H. (2009) The “Writing on the Cosmic Wall”: Is There a Straightforward Explanation of the Cosmic Microwave Background? Annalen der Physik, 521, 699-721. https://doi.org/10.1002/andp.200952110-1104
[129]
Monna, A., Seitz, S., Greisel, N., Eichner, T., Drory, N., Postman, M., et al. (2013) CLASH: Z ∼ 6 Young Galaxy Candidate Quintuply Lensed by the Frontier Field Cluster RXC J2248.7-4431. Monthly Notices of the Royal Astronomical Society, 438, 1417-1434. https://doi.org/10.1093/mnras/stt2284
[130]
Zheng, W., Zitrin, A., Infante, L., Laporte, N., Huang, X., Moustakas, J., et al. (2017) Young Galaxy Candidates in the Hubble Frontier Fields. IV. MACS J1149.5+2223. The Astrophysical Journal, 836, 210. https://doi.org/10.3847/1538-4357/aa5d55
[131]
Oesch, P.A., Brammer, G., Dokkum, P.G.V., Illingworth, G.D., Bouwens, R.J., Labbé, I., et al. (2016) A Remarkably Luminous Galaxy at Z = 11.1 Measured with Hubble Space Telescope Grism Spectroscopy. The Astrophysical Journal, 819, 129. https://doi.org/10.3847/0004-637x/819/2/129
[132]
Finkelstein, S.L., Bagley, M.B., Ferguson, H.C., Wilkins, S.M., Kartaltepe, J.S., Papovich, C., et al. (2023) CEERS Key Paper. I. An Early Look into the First 500 Myr of Galaxy Formation with JWST. The Astrophysical Journal Letters, 946, L13. https://doi.org/10.3847/2041-8213/acade4
[133]
Harikane, Y., Ouchi, M., Oguri, M., Ono, Y., Nakajima, K., Isobe, Y., et al. (2023) A Comprehensive Study of Galaxies at Z ∼ 9-16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-Reionization Epoch. The Astrophysical Journal Supplement Series, 265, 5. https://doi.org/10.3847/1538-4365/acaaa9
[134]
Castellano, M., Fontana, A., Treu, T., Santini, P., Merlin, E., Leethochawalit, N., et al. (2022) Early Results from GLASS-JWST. III. Galaxy Candidates at Z ∼ 9-15. The Astrophysical Journal Letters, 938, L15. https://doi.org/10.3847/2041-8213/ac94d0
[135]
Santini, P., Fontana, A., Castellano, M., Leethochawalit, N., Trenti, M., Treu, T., et al. (2023) Early Results from GLASS-JWST. XI. Stellar Masses and Mass-to-Light Ratio of Z > 7 Galaxies. The Astrophysical Journal Letters, 942, L27. https://doi.org/10.3847/2041-8213/ac9586
[136]
Kocevski, D.D., Barro, G., McGrath, E.J., Finkelstein, S.L., Bagley, M.B., Ferguson, H.C., et al. (2023) CEERS Key Paper. II. A First Look at the Resolved Host Properties of AGN at 3 < Z < 5 with JWST. The Astrophysical Journal Letters, 946, L14. https://doi.org/10.3847/2041-8213/acad00
[137]
Dekel, A., Sarkar, K.C., Birnboim, Y., Mandelker, N. and Li, Z. (2023) Efficient Formation of Massive Galaxies at Cosmic Dawn by Feedback-Free Starbursts. Monthly Notices of the Royal Astronomical Society, 523, 3201-3218. https://doi.org/10.1093/mnras/stad1557
[138]
Ferrara, A. (2023) Super-Early JWST Galaxies, Outflows and Lyman Alpha Visibility in the EoR.
[139]
Labbé, I., van Dokkum, P., Nelson, E., Bezanson, R., Suess, K.A., Leja, J., et al. (2023) A Population of Red Candidate Massive Galaxies ~ 600 Myr after the Big Bang. Nature, 616, 266-269. https://doi.org/10.1038/s41586-023-05786-2
[140]
Ferrara, A., Pallottini, A. and Dayal, P. (2023) On the Stunning Abundance of Super-Early, Luminous Galaxies Revealed by JWST. Monthly Notices of the Royal Astronomical Society, 522, 3986-3991. https://doi.org/10.1093/mnras/stad1095
[141]
Jones, E., Smith, B., Davé, R., Narayanan, D. and Li, Q. (2024) Simba-EoR: Early Galaxy Formation in the Simba Simulation Including a New Sub-Grid Interstellar Medium Model.
[142]
Bond, H.E., Nelan, E.P., VandenBerg, D.A., Schaefer, G.H. and Harmer, D. (2013) HD 140283: A Star in the Solar Neighborhood That Formed Shortly after the Big Bang. The Astrophysical Journal, 765, L12. https://doi.org/10.1088/2041-8205/765/1/l12
[143]
Creevey, O.L., Thévenin, F., Berio, P., Heiter, U., von Braun, K., Mourard, D., et al. (2015) Benchmark Stars for Gaia Fundamental Properties of the Population II Star HD 140283 from Interferometric, Spectroscopic, and Photometric Data. Astronomy & Astrophysics, 575, A26. https://doi.org/10.1051/0004-6361/201424310
[144]
Tang, J. and Joyce, M. (2021) Revised Best Estimates for the Age and Mass of the Methuselah Star HD 140283 Using MESA and Interferometry and Implications for 1D Convection.
[145]
Einstein, A. and Grossman, M. (1913) Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Zeitschrift für Mathematik und Physik, 62, 225-261.
[146]
Einstein, A. and Grossman, M. (1915) Die Feldgleichungen der Gravitation. Sitzungs-berichte der Königlich Preussischen Akademie der Wissenschaften (Berlin), 844-846.
[147]
Hilbert, D. (1915) Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse. 395.
[148]
Janssen, M. and Renn, J. (2015) Arch and Scaffold: How Einstein Found His Field Equations. Physics Today, 68, 30-36. https://doi.org/10.1063/pt.3.2979
[149]
Einstein, A. (1917) Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, 142-152.
[150]
Schwarzschild, K. (1916) Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 189-196.
[151]
Kottler, F. (1918) Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Annalen der Physik, 361, 401-462. https://doi.org/10.1002/andp.19183611402
[152]
Sexl, R.U. and Urbantke, H.K. (2002) Gravitation und Kosmologie. Eine Einführung in die Allgemeine Relativitätstheorie.
[153]
Rebhan, E. (2012) Theoretische Physik: Relativitätstheorie und Kosmologie.
[154]
Weinberg, S. and Dicke, R.H. (1973) Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. American Journal of Physics, 41, 598-599. https://doi.org/10.1119/1.1987308
[155]
Wilson, O.C. (1939) Possible Applications of Supernovae to the Study of the Nebular Red Shifts. The Astrophysical Journal, 90, 634. https://doi.org/10.1086/144134
[156]
Rust, B.W. (1974) The Use of Supernovae Light Curves for Testing the Expansion Hypothesis and Other Cosmological Relations. PhD Thesis, Oak Ridge National Laboratory.
[157]
Leibundgut, B., Schommer, R., Phillips, M., Riess, A., Schmidt, B., Spyromilio, J., et al. (1996) Time Dilation in the Light Curve of the Distant Type Ia Supernova SN 1995k. The Astrophysical Journal, 466, L21-L24. https://doi.org/10.1086/310164
[158]
Goldhaber, G., Groom, D.E., Kim, A., Aldering, G., Astier, P., Conley, A., et al. (2001) Timescale Stretch Parameterization of Type Ia Supernova B-Band Light Curves. The Astrophysical Journal, 558, 359-368. https://doi.org/10.1086/322460
[159]
Foley, R.J., Filippenko, A.V., Leonard, D.C., Riess, A.G., Nugent, P. and Perlmutter, S. (2005) A Definitive Measurement of Time Dilation in the Spectral Evolution of the Moderate-Redshift Type Ia Supernova 1997ex. The Astrophysical Journal, 626, L11-L14. https://doi.org/10.1086/431241
[160]
Segal, I.E. (1997) Cosmic Time Dilation. The Astrophysical Journal, 482, L115-L117. https://doi.org/10.1086/310698
[161]
(2006) First Crisis in Cosmology Conference. American Institute of Physics Conference Series, Vol. 822.
[162]
Holushko, H. (2012) Tired Light and Type Ia Supernovae Observations.
[163]
Taub, A.H. (1951) Empty Space-Times Admitting a Three Parameter Group of Motions. The Annals of Mathematics, 53, 472-490. https://doi.org/10.2307/1969567
[164]
Newman, E., Tamburino, L. and Unti, T. (1963) Empty-Space Generalization of the Schwarzschild Metric. Journal of Mathematical Physics, 4, 915-923. https://doi.org/10.1063/1.1704018
[165]
Vincenzi, M., Brout, D., Armstrong, P., Popovic, B., Taylor, G., Acevedo, M., et al. (2024) The Dark Energy Survey Supernova Program: Cosmological Analysis and Systematic Uncertainties.
[166]
Taylor, J. (1997) Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. 2nd Edition, University Science Books.
[167]
Bardoux, Y., Caldarelli, M.M. and Charmousis, C. (2014) Integrability in Conformally Coupled Gravity: Taub-Nut Spacetimes and Rotating Black Holes. Journal of High Energy Physics, 2014, Article No. 39. https://doi.org/10.1007/jhep05(2014)039
[168]
Abbasvandi, N., Tavakoli, M. and Mann, R.B. (2021) Thermodynamics of Dyonic NUT Charged Black Holes with Entropy as Noether Charge. Journal of High Energy Physics, 2021, Article No. 152. https://doi.org/10.1007/jhep08(2021)152
[169]
Mann, R.B., Pando Zayas, L.A. and Park, M. (2021) Complement to Thermodynamics of Dyonic Taub-NUT-Ads Spacetime. Journal of High Energy Physics, 2021, Article No. 39. https://doi.org/10.1007/jhep03(2021)039
[170]
Miller, J.G. (1973) Global Analysis of the Kerr-Taub-NUT Metric. Journal of Mathematical Physics, 14, 486-494. https://doi.org/10.1063/1.1666343
[171]
Clarkson, C. and Maartens, R. (2010) Inhomogeneity and the Foundations of Concordance Cosmology. Classical and Quantum Gravity, 27, Article ID: 124008. https://doi.org/10.1088/0264-9381/27/12/124008
[172]
Zeng, D.-F. and Zhao, H.-J. (2005) Does Standard Cosmology Express Cosmological Principle Faithfully?
[173]
Zeng, D.-F. and Gao, Y.-H. (2005) An Ignored Assumption of ΛCDM Cosmology and an Old Question: Do We Live on the “Center” of the Universe?
[174]
Zeng, D.-F. and Gao, Y.-H. (2005) A Question about Standard Cosmology and Extremely Dense Stars’ Collapsing.
[175]
Belgacem, E., Dirian, Y., Foffa, S. and Maggiore, M. (2018) Nonlocal Gravity. Conceptual Aspects and Cosmological Predictions. Journal of Cosmology and Astroparticle Physics, 2018, Article No. 2. https://doi.org/10.1088/1475-7516/2018/03/002
[176]
Wondrak, M.F., Bleicher, M., Nicolini, P. (2017) Black Holes and High Energy Physics: From Astrophysics to Large Extra Dimensions.
[177]
Guillaume, C. (1896) La température de l’espace. La Nature, 24, 234.
[178]
Assis, A.K.T. and Neves, M.C.D. (2020) Complete and Commented Translation of Guillaume’s 1896 Paper on the Temperature of Space. American Journal of Physics, 88, 1140-1144. https://doi.org/10.1119/10.0001775
[179]
Eddington, A.S. (1988) The Internal Constitution of the Stars. Cambridge University Press. https://doi.org/10.1017/cbo9780511600005
[180]
Regener, E. (1933) Der Energiestrom der Ultrastrahlung. Zeitschrift für Physik, 80, 666-669. https://doi.org/10.1007/bf01335703
[181]
Fixsen, D.J. (2009) The Temperature of the Cosmic Microwave Background. The Astrophysical Journal, 707, 916-920. https://doi.org/10.1088/0004-637x/707/2/916
[182]
Nernst, W. (1938) Die Strahlungstemperatur des Universums. Annalen der Physik, 424, 44-48. https://doi.org/10.1002/andp.19384240107
[183]
Finlay-Freundlich, E. (1954) Red-Shifts in the Spectra of Celestial Bodies. Proceedings of the Physical Society. Section A, 67, 192-193. https://doi.org/10.1088/0370-1298/67/2/114
[184]
Finlay-Freundlich, E. (1953) Letters to the Editor: On the Interpretation of Freundlich’s Red-Shift Formula. Nachrichten der Akademie der Wissenschaften in Göttingen Mathematisch-Physikalische Klasse IIa 7, 95.
[185]
Born, M. (1954) On the Interpretation of Freundlich’s Red-Shift Formula. Proceedings of the Physical Society. Section A, 67, 193-194. https://doi.org/10.1088/0370-1298/67/2/115
[186]
Penzias, A.A. and Wilson, R.W. (1965) A Measurement of Excess Antenna Temperature at 4080 Mc/s. The Astrophysical Journal, 142, 419-421. https://doi.org/10.1086/148307
[187]
Kellermann, K.I. (2019) Radio Source Counts, Type 1a SN, and the Steady State Universe Revisted. In: American Astronomical Society Meeting Abstracts #233, American Astronomical Society Meeting Abstracts, Vol. 233, 135.
[188]
Alpher, R.A. and Herman, R. (1948) Evolution of the Universe. Nature, 162, 774-775. https://doi.org/10.1038/162774b0
[189]
Alpher, R.A., Bethe, H. and Gamow, G. (1948) The Origin of Chemical Elements. Physical Review, 73, 803-804. https://doi.org/10.1103/physrev.73.803
[190]
Gamow, G. (1953) Expanding Universe and, the Origin of Galaxies. Danske Videnskabernes Selskab, 27, 10.
[191]
Gamow, G. (1961) The Creation of the Universe.
[192]
Layzer, D. and Hively, R. (1973) Origin of the Microwave Background. The Astrophysical Journal, 179, 361-370. https://doi.org/10.1086/151874
Carr, B.J. (1981) Pregalactic Stars and the Origin of the Microwave Background. Monthly Notices of the Royal Astronomical Society, 195, 669-684. https://doi.org/10.1093/mnras/195.3.669
[195]
Wright, E.L. (1982) Thermalization of Starlight by Elongated Grains—Could the Microwave Background Have Been Produced by Stars. The Astrophysical Journal, 255, 401-407. https://doi.org/10.1086/159840
[196]
Assis, A.K.T. (1993) A Steady-State Cosmology. In: Arp, H.C., Keys, C.R. and Rudnicki, K., Eds., Progress in New Cosmologies: Beyond the Big Bang, Springer, 153.
[197]
Olbers, H. (1926) Astronomisches Jahrbuch Für Das Jahr 1826. Königliche Akademie der Wissenschaften, 110.
[198]
de Sitter, W. (1917) On the Relativity of Inertia. Remarks Concerning Einstein’s Latest Hypothesis. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences, 19, 1217-1225.
[199]
Lense, J. (1917) Das Newtonsche Gesetz in Nichteuklidischen Räumen. Astronomische Nachrichten, 205, 241-248. https://doi.org/10.1002/asna.19172051602
[200]
Lanczos, K. (1924) Über eine stationäre Kosmologie im Sinne der Einsteinschen Gravitationstheorie. Zeitschrift für Physik, 21, 73-110. https://doi.org/10.1007/bf01328251
[201]
Nernst, W. (1937) Weitere Prüfung der Annahme eines stationären Zustandes im Weltall. Zeitschrift für Physik, 106, 633-661. https://doi.org/10.1007/bf01339902
[202]
Kragh, H. (2017) Is the Universe Expanding? Fritz Zwicky and Early Tired-Light Hypotheses. Journal of Astronomical History and Heritage, 20, 2-12. https://doi.org/10.3724/sp.j.1440-2807.2017.01.01
[203]
Kaiser, F. (1934) Zur Deutung der Spektrallinien-Rotverschiebung in den Spiralnebeln und Nebelhaufen. Astronomische Nachrichten, 252, 11-12. https://doi.org/10.1002/asna.19342520104
[204]
Zwicky, F. (1929) On the Redshift of Spectral Lines through Interstellar Space. Proceedings of the National Academy of Sciences, 15, 773-779. https://doi.org/10.1073/pnas.15.10.773
[205]
Zwicky, F. (1933) Die Rotverschiebung von Extragalaktischen Nebeln. Helvetica Physica Acta, 6, 110-127.
[206]
Hubble, E. (1936) Effects of Red Shifts on the Distribution of Nebulae. The Astrophysical Journal, 84, 517. https://doi.org/10.1086/143782
[207]
Born, M. (1953) Nachrichten der Akademie der Wissenschaften in Göttingen Mathematisch-Physikalische Klasse IIa. Vandenhoeck & Ruprecht, 7, 102.
[208]
Pecker, J.C., Roberts, A.P. and Vigier, J.P. (1972) Non-Velocity Redshifts and Photon-Photon Interactions. Nature, 237, 227-229. https://doi.org/10.1038/237227a0
[209]
Jaakkola, T., Moles, M., Vigier, J.P., Pecker, J.C. and Yourgrau, W. (1975) Cosmological Implications of Anomalous Redshifts? A Possible Working Hypothesis. Foundations of Physics, 5, 257-269. https://doi.org/10.1007/bf00717442
[210]
Maric, Z., Moles, M. and Vigier, J.P. (1976) Possible Measurable Consequences of the Existence of a New Anomalous Redshift Cause on the Shape of Symmetrical Spectral Lines. Astronomy and Astrophysics, 53, 191-196.
[211]
Jaakkola, T., Moles, M. and Vigier, J. (1979) Empirical Status in Cosmology and the Problem of the Nature of Redshifts. Astronomische Nachrichten, 300, 229-238. https://doi.org/10.1002/asna.19793000503
[212]
Chow, T.L. (1981) Non-Doppler Redshifts and Energy Decay of Elementary Particles. Lettere Al Nuovo Cimento Series 2, 32, 351-352. https://doi.org/10.1007/bf02743621
[213]
Laviolette, P.A. (1986) Is the Universe Really Expanding? The Astrophysical Journal, 301, 544. https://doi.org/10.1086/163922
[214]
Reber, G. (1986) Intergalactic Plasma. IEEE Transactions on Plasma Science, 14, 678-682. https://doi.org/10.1109/tps.1986.4316618
[215]
Crawford, D.F. (1987) Diffuse Background X Rays and the Density of the Intergalactic Medium. Australian Journal of Physics, 40, 459-464. https://doi.org/10.1071/ph870459
[216]
Kierein, J.W. (1988) A Criticism of Big Bang Cosmological Models Based on Interpretation of the Red Shift. Laser and Particle Beams, 6, 453-456. https://doi.org/10.1017/s0263034600005383
[217]
Marmet, P. and Reber, G. (1989) Cosmic Matter and the Nonexpanding Universe. IEEE Transactions on Plasma Science, 17, 264-269. https://doi.org/10.1109/27.24634
[218]
Arp, H.C., Burbidge, G., Hoyle, F., Narlikar, J.V. and Wickramasinghe, N.C. (1990) The Extragalactic Universe: An Alternative View. Nature, 346, 807-812. https://doi.org/10.1038/346807a0
[219]
Vigier, J. (1990) Evidence for Nonzero Mass Photons Associated with a Vacuum-Induced Dissipative Red-Shift Mechanism. IEEE Transactions on Plasma Science, 18, 64-72. https://doi.org/10.1109/27.45506
[220]
Bunn, E.F. and Hogg, D.W. (2009) The Kinematic Origin of the Cosmological Redshift. American Journal of Physics, 77, 688-694. https://doi.org/10.1119/1.3129103
[221]
Sanejouand, Y. (2022) A Framework for the Next Generation of Stationary Cosmological Models. International Journal of Modern Physics D, 31, Article ID: 2250084. https://doi.org/10.1142/s0218271822500845
[222]
Ostermann, P. (2002) A Stationary Universe and the Basics of Relativity Theory.
[223]
Ostermann, P. (2003) The Concordance Model—A Heuristic Approach from a Station-Ary Universe.
[224]
Ostermann, P. (2004) A Stationary Universe and the Basics of Relativity Theory.
[225]
Ostermann, P. (2014) SUM: Model of a Stationary Background Universe behind Our Cosmos.