|
卟啉代谢在脂肪性肝病方面的研究进展
|
Abstract:
近年来由于人口老龄化、病毒性肝炎控制的改善以及肥胖和酒精中毒的流行,脂肪肝(FLD)正在成为中国慢性肝病的主要原因。脂肪性肝病分为酒精性肝病和非酒精性脂肪性肝病,二者虽然发病机制不同,但最终都会引起线粒体功能障碍,进一步导致肝损伤。卟啉是生物体合成叶绿素、血红素、维生素B12等必不可少的前体物质,其合成代谢的重要步骤发生在肝细胞线粒体中,脂肪性肝病导致的线粒体障碍会进一步引起卟啉合成代谢紊乱,因此我们认为血卟啉检测可以作为肝脏损害检测的指标之一,并为脂肪肝治疗提供有效靶点。
Fatty liver disease (FLD) is becoming a major cause of chronic liver disease in China in recent years due to an aging population, improved control of viral hepatitis, and the prevalence of obesity and alcoholism. Fatty liver disease is divided into alcoholic liver disease and non-alcoholic fatty liver disease. Although the pathogenesis of both is different, they will eventually cause mitochondrial dysfunction and further lead to liver injury. Porphyrin is an essential precursor for the synthesis of chlorophyll, heme, vitamin B12, etc., and an important step of its anabolism occurs in mitochondria of liver cells. Mitochondrial disorders caused by fatty liver disease will further cause porphyrin anabolism disorders. Therefore, we believe that the detection of blood porphyrin can be used as one of the indicators for the detection of liver damage. And provide an effective target for the treatment of fatty liver.
[1] | Marchesini, G., Brizi, M., Bianchi, G., et al. (2001) Nonalcoholic Fatty Liver Disease: A Feature of the Metabolic Syndrome. Diabetes, 50, 1844-1850. https://doi.org/10.2337/diabetes.50.8.1844 |
[2] | Buyco, D.G., Martin, J., Jeon, S., et al. (2021) Experimental Models of Metabolic and Alcoholic Fatty Liver Disease. World Journal of Gastroenterology, 27, 1-18. https://doi.org/10.3748/wjg.v27.i1.1 |
[3] | 朱子薇, 张健, 王倩, 等. 卟啉代谢途径高价值产物及其微生物合成研究进展[J]. 中国科学: 生命科学, 2020, 50(12): 1405-1417. |
[4] | 张璎, 郭蕊, 苗向霞, 等. 卟啉代谢与慢性肝病相关研究进展[J]. 世界最新医学信息文摘, 2019, 19(99): 127-128+130. |
[5] | 郭蕊, 张璎, 段一超, 等. 卟啉代谢在慢性乙型肝炎中的作用[J]. 世界最新医学信息文摘, 2019, 19(99): 151-153. |
[6] | 黄莘, 丁涛, 黄非, 等. 改造大肠杆菌卟啉代谢途径对重组过氧化物酶活性的影响[J]. 微生物学报, 2018, 58(9): 1605-1613. |
[7] | Stewart, S., Jones, D. and Day, C.P. (2001) Alcoholic Liver Disease: New Insights into Mechanisms and Preventative Strategies. Trends in Molecular Medicine, 7, 408-413. https://doi.org/10.1016/S1471-4914(01)02096-2 |
[8] | Baburina, Y., Odinokova, I. and Krestinina, O. (2020) The Effects of PK11195 and Protoporphyrin IX Can Modulate Chronic Alcohol Intoxication in Rat Liver Mitochondria under the Opening of the Mitochondrial Permeability Transition Pore. Cells, 9, Article 1774. https://doi.org/10.3390/cells9081774 |
[9] | Lieber, C.S. (2004) Alcoholic Fatty Liver: Its Pathogenesis and Mechanism of Progression to Inflammation and Fibrosis. Alcohol, 34, 9-19. https://doi.org/10.1016/j.alcohol.2004.07.008 |
[10] | Mello, T., Ceni, E., Surrenti, C., et al. (2008) Alcohol Induced Hepatic Fibrosis: Role of Acetaldehyde. Molecular Aspects of Medicine, 29, 17-21. https://doi.org/10.1016/j.mam.2007.10.001 |
[11] | Lívero, F.A. and Acco, A. (2016) Molecular Basis of Alcoholic Fatty Liver Disease: From Incidence to Treatment: Alcoholic Fatty Liver Disease: A Review. Hepatology Research, 46, 111-123. https://doi.org/10.1111/hepr.12594 |
[12] | Zakhari, S. (2006) Overview: How Is Alcohol Metabolized by the Body? Alcohol Research & Health, 29, 245-254. |
[13] | Liu, J. (2014) Ethanol and Liver: Recent Insights into the Mechanisms of Ethanol-Induced Fatty Liver. World Journal of Gastroenterology, 20, Article 14672-14685. https://doi.org/10.3748/wjg.v20.i40.14672 |
[14] | Nagata, K., Suzuki, H. and Sakaguchi, S. (2007) Common Pathogenic Mechanism in Development Progression of Liver Injury Caused by Non-Alcoholic or Alcoholic Steatohepatitis. The Journal of Toxicological Sciences, 32, 453-468. https://doi.org/10.2131/jts.32.453 |
[15] | Bailey, S.M., Mantena, S.K., Millender-Swain, T., et al. (2009) Ethanol and Tobacco Smoke Increase Hepatic Steatosis and Hypoxia in the Hypercholesterolemic ApoE-/- Mouse: Implications for a “Multihit” Hypothesis of Fatty Liver Disease. Free Radical Biology and Medicine, 46, 928-938. https://doi.org/10.1016/j.freeradbiomed.2009.01.003 |
[16] | Albano, E. (2002) Free Radical Mechanisms in Immune Reactions Associated with Alcoholic Liver Disease. Free Radical Biology and Medicine, 32, 110-114. https://doi.org/10.1016/S0891-5849(01)00773-0 |
[17] | Kim, S.J., Park, J.G. and Lee, S.M. (2012) Protective Effect of Heme Oxygenase-1 Induction Against Hepatic Injury in Alcoholic Steatotic Liver Exposed to Cold Ischemia/Reperfusion. Life Sciences, 90, 169-176. https://doi.org/10.1016/j.lfs.2011.10.003 |
[18] | Lu, Y., Zhuge, J., Wang, X., et al. (2008) Cytochrome P450 2E1 Contributes to Ethanol-Induced Fatty Liver in Mice. Hepatology, 47, 1483-1494. https://doi.org/10.1002/hep.22222 |
[19] | Bjarnason, I., Ward, K. and Peters, T. (1984) The Leaky Gut of Alcoholism: Possible Route of Entry for Toxic Compounds. The Lancet, 323, 179-182. https://doi.org/10.1016/S0140-6736(84)92109-3 |
[20] | Szabo, G. (2015) Gut-Liver Axis in Alcoholic Liver Disease. Gastroenterology, 148, 30-36. https://doi.org/10.1053/j.gastro.2014.10.042 |
[21] | Bataller, R., Rombouts, K., Altamirano, J., et al. (2011) Fibrosis in Alcoholic and Nonalcoholic Steatohepatitis. Best Practice & Research Clinical Gastroenterology, 25, 231-244. https://doi.org/10.1016/j.bpg.2011.02.010 |
[22] | Thurman, R.G. II. (1998) Alcoholic Liver Injury Involves Activation of Kupffer Cells by Endotoxin. American Journal of Physiology-Gastrointestinal and Liver Physiology, 275, G605-G611. https://doi.org/10.1152/ajpgi.1998.275.4.G605 |
[23] | Karkucinska-Wieckowska, A., Simoes, I.C.M., Kalinowski, P., et al. (2022) Mitochondria, Oxidative Stress and Nonalcoholic Fatty Liver Disease: A Complex Relationship. European Journal of Clinical Investigation, 52, e13622. https://doi.org/10.1111/eci.13622 |
[24] | Shen, K., Singh, A.D., Modaresi, Esfeh, J., et al. (2022) Therapies for Non-Alcoholic Fatty Liver Disease: A 2022 Update. World Journal of Hepatology, 14, 1718-1729. https://doi.org/10.4254/wjh.v14.i9.1718 |
[25] | Wang, X. J. and Malhi, H. (2018) Nonalcoholic Fatty Liver Disease. Annals of Internal Medicine, 169, ITC65-ITC80. https://doi.org/10.7326/AITC201811060 |
[26] | Bruschi, F.V., Tardelli, M., Einwallner, E., et al. (2020) PNPLA3 I148M Up-Regulates Hedgehog and Yap Signaling in Human Hepatic Stellate Cells. International Journal of Molecular Sciences, 21, Article 8711. https://doi.org/10.3390/ijms21228711 |
[27] | Fujii, J., Homma, T., Kobayashi, S., et al. (2018) Mutual Interaction Between Oxidative Stress and Endoplasmic Reticulum Stress in the Pathogenesis of Diseases Specifically Focusing on Non-Alcoholic Fatty Liver Disease. World Journal of Biological Chemistry, 9, 1-15. https://doi.org/10.4331/wjbc.v9.i1.1 |
[28] | Mcclung, J.A., Levy, L., Garcia, V., et al. (2022) Heme-Oxygenase and Lipid Mediators in Obesity and Associated Cardiometabolic Diseases: Therapeutic Implications. Pharmacology & Therapeutics, 231, Article 107975. https://doi.org/10.1016/j.pharmthera.2021.107975 |
[29] | Lebeaupin, C., Vallée, D., Hazari, Y., et al. (2018) Endoplasmic Reticulum Stress Signaling and the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 69, 927-947. https://doi.org/10.1016/j.jhep.2018.06.008 |
[30] | Pfefferlé, M., Ingoglia, G., Schaer, C.A., et al. (2020) Hemolysis Transforms Liver Macrophages into Antiinflammatory Erythrophagocytes. Journal of Clinical Investigation, 130, 5576-5590. https://doi.org/10.1172/JCI137282 |
[31] | Tseng, S.H., Chang, T.Y., Shih, C.K., et al. (2018) Effect of Endoplasmic Reticular Stress on Free Hemoglobin Metabolism and Liver Injury. International Journal of Molecular Sciences, 19, Article 1977. https://doi.org/10.3390/ijms19071977 |
[32] | García-Ruiz, I., Rodríguez-Juan, C., Díaz-Sanjuan, T., et al. (2006) Uric Acid and Anti-TNF Antibody Improve Mitochondrial Dysfunction in Ob/Ob Mice. Hepatology, 44, 581-591. https://doi.org/10.1002/hep.21313 |
[33] | Lee, K.C., Wu, P.S. and Lin, H.C. (2023) Pathogenesis and Treatment of Non-Alcoholic Steatohepatitis and Its Fibrosis. Clinical and Molecular Hepatology, 29, 77-98. https://doi.org/10.3350/cmh.2022.0237 |
[34] | Nikam, A., Patankar, J.V., Somlapura, M., et al. (2018) The PPARα Agonist Fenofibrate Prevents Formation of Protein Aggregates (Mallory-Denk Bodies) in a Murine Model of Steatohepatitis-Like Hepatotoxicity. Scientific Reports, 8, Article No. 12964. https://doi.org/10.1038/s41598-018-31389-3 |
[35] | Abu-Halaka, D., Gover, O., Rauchbach, E., et al. (2021) Whole Body Metabolism Is Improved by Hemin Added to High Fat Diet While Counteracted by Nitrite: A Mouse Model of Processed Meat Consumption. Food & Function, 12, 8326-8339. https://doi.org/10.1039/D1FO01199E |
[36] | Di Ciaula, A., Passarella, S., Shanmugam, H., et al. (2021) Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies? International Journal of Molecular Sciences, 22, Article 5375. https://doi.org/10.3390/ijms22105375 |
[37] | Cotter, T.G. and Rinella, M. (2020) Nonalcoholic Fatty Liver Disease 2020: The State of the Disease. Gastroenterology, 158, 1851-1864. https://doi.org/10.1053/j.gastro.2020.01.052 |
[38] | Fang, Y.L., Chen, H., Wang, C.L., et al. (2018) Pathogenesis of Non-Alcoholic Fatty Liver Disease in Children and Adolescence: From “Two Hit Theory” to “Multiple Hit Model”. World Journal of Gastroenterology, 24, 2974-2983. https://doi.org/10.3748/wjg.v24.i27.2974 |
[39] | Anstee, Q., Daly, A. and Day, C. (2011) Genetics of Alcoholic and Nonalcoholic Fatty Liver Disease. Seminars in Liver Disease, 31, 128-146. https://doi.org/10.1055/s-0031-1276643 |
[40] | Song, B.J., Abdelmegeed, M.A., Henderson, L.E., et al. (2013) Increased Nitroxidative Stress Promotes Mitochondrial Dysfunction in Alcoholic and Nonalcoholic Fatty Liver Disease. Oxidative Medicine and Cellular Longevity, 2013, 1-14. https://doi.org/10.1155/2013/781050 |
[41] | 陈丽娜, 王育新, 许艳, 等. 肝功障碍及胃癌患者体内血卟啉特征光谱的研究[J]. 中国医学物理学杂志, 1995(4): 203-205. |
[42] | 刘桪, 李少华, 高善玲, 等. 慢性肝病患者血卟啉变化初探[J]. 哈尔滨医科大学学报, 1992(2): 99-101. |
[43] | Ma, X., Hua, J., Mohamood, A.R., et al. (2007) A High-Fat Diet and Regulatory T Cells Influence Susceptibility to Endotoxin-Induced Liver Injury. Hepatology, 46, 1519-1529. https://doi.org/10.1002/hep.21823 |
[44] | Drummond, G.S., Baum, J., Greenberg, M., et al. (2019) HO-1 Overexpression and Underexpression: Clinical Implications. Archives of Biochemistry and Biophysics, 673, 108073. https://doi.org/10.1016/j.abb.2019.108073 |
[45] | Chatterjee, S., Mukherjee, S., Sankara, Sivaprasad, L.V.J., et al. (2021) Transporter Activity Changes in Nonalcoholic Steatohepatitis: Assessment with Plasma Coproporphyrin I and III. Journal of Pharmacology and Experimental Therapeutics, 376, 29-39. https://doi.org/10.1124/jpet.120.000291 |
[46] | Suzuki, A. and Diehl, A.M. (2017) Nonalcoholic Steatohepatitis. Annual Review of Medicine, 68, 85-98. https://doi.org/10.1146/annurev-med-051215-031109 |