全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于RBF神经网络的磁悬浮时滞系统Backstepping控制与仿真
Backstepping Control and Simulation of Magnetic Suspension Time Delay System Based on RBF Neural Network

DOI: 10.12677/aam.2024.137296, PP. 3105-3115

Keywords: 磁悬浮时滞系统,RBF神经网络,Backstepping
Magnetic Levitation Time-Delay System
, RBF Neural Network, Backstepping

Full-Text   Cite this paper   Add to My Lib

Abstract:

磁悬浮系统能使铁磁性物体悬浮在空中,可以应用于科研、医疗、娱乐、交通等多个领域。为了解决非线性、不稳定磁悬浮系统的控制问题,建立了磁悬浮时滞系统的数学模型,采用了Backstepping控制以及RBF神经网络和Backstepping控制结合的方法进行研究,采用李雅普诺夫稳定性理论分别设计非线性控制器,保证闭环系统的理论稳定。在此基础上,利用Radial basis function (RBF)神经网络的逼近特性,设计了自适应律,研究了对系统中未知函数的拟合。最后,通过MATLAB对两种控制方法的效果进行对比,仿真结果表明,两种方法均能使系统稳定,RBF神经网络与Backstepping控制结合的方法能较快实现稳定,效果更好,且RBF神经网络对未知函数的拟合效果也良好。
The magnetic levitation system can levitate ferromagnetic objects in the air, which can be used in scientific research, medical treatment, entertainment, transportation and other fields. In order to solve the control problem of nonlinear and unstable maglev system, a mathematical model of the maglev delay system is established, the backstepping control and the combination of RBF neural network and Backstepping control are used to study, and the nonlinear controller is designed by using the Lyapunov stability theory to ensure the theoretical stability of the closed-loop system. On this basis, the adaptive law is designed by using the approximation characteristics of the Radial basis function (RBF) neural network, and the fitting of the unknown functions in the system is studied. Finally, the results of the two control methods are compared by MATLAB, and the simulation results show that the two methods can make the system stable, and the combination of RBF neural network and Backstepping control can achieve stability quickly and better, and the RBF neural network has a good fitting effect on the unknown function.

References

[1]  Sarabi, M.R., Yetisen, A.K. and Tasoglu, S. (2022) Magnetic Levitation for Space Exploration. Trends in Biotechnology, 40, 915-917.
https://doi.org/10.1016/j.tibtech.2022.03.010
[2]  Vibin, R., Govardhan, M.A. and Raffik, R. (2023) Magnetic Levitation Based Industrial Material Handling Systems: A Futuristic Review. 2023 2nd International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation (ICAECA), Coimbatore, 16-17 June 2023, 1-6.
[3]  Wang, Z., Huang, C., Long, Z. and Li, X. (2018). Decoupling Levitation Control of PEMS High Speed Maglev Train Based on Feedback Linearization. 2018 13th World Congress on Intelligent Control and Automation (WCICA), Changsha, 4-8 July 2018, 1008-1013.
https://doi.org/10.1109/wcica.2018.8630541
[4]  Karahan, M. and Kasnakoglu, C. (2022). Nonlinear Modeling and Robust Backstepping Control of a Quadrotor Unmanned Aerial Vehicle. 2022 5th International Conference of Computer and Informatics Engineering (IC2IE), Jakarta, 13-14 September 2022, 94-99.
https://doi.org/10.1109/ic2ie56416.2022.9970136
[5]  Singh, B.K. and Kumar, A. (2018). Backstepping Approach Based Controller Design for Magnetic Levitation System. 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gorakhpur, 2-4 November 2018, 1-6.
https://doi.org/10.1109/upcon.2018.8596885
[6]  Sun, Y., Wang, S., Lu, Y., Xu, J. and Xie, S. (2022) Control of Time Delay in Magnetic Levitation Systems. IEEE Magnetics Letters, 13, 1-5.
https://doi.org/10.1109/lmag.2021.3123909
[7]  Sun, Y., Xu, J., Chen, C. and Hu, W. (2022) Reinforcement Learning-Based Optimal Tracking Control for Levitation System of Maglev Vehicle with Input Time Delay. IEEE Transactions on Instrumentation and Measurement, 71, 1-13.
https://doi.org/10.1109/tim.2022.3142059
[8]  Bouaiss, O., Mechgoug, R., Taleb-Ahmed, A. and Brikel, A.E. (2024) Robust Trajectory Tracking of Quadrotors Using Adaptive Radial Basis Function Network Compensation Control. Journal of the Franklin Institute, 361, 1167-1185.
https://doi.org/10.1016/j.jfranklin.2023.12.045
[9]  Shou, B., Zhang, H., Long, Z., Xie, Y., Zhang, K. and Gu, Q. (2023). Design and Applications of Q-Learning Adaptive PID Algorithm for Maglev Train Levitation Control System. 2023 35th Chinese Control and Decision Conference (CCDC), Yichang, 20-22 May 2023, 1947-1953.
https://doi.org/10.1109/ccdc58219.2023.10326815
[10]  Sebastian, J. and V., S.K. (2023). Direct Adaptive Control of Nonaffine Magnetic Levitation System Using Radial Basis Function Neural Network. 2023 International Conference on Emerging Techniques in Computational Intelligence (ICETCI), Hyderabad, 21-23 September 2023, 303-308.
https://doi.org/10.1109/icetci58599.2023.10331257
[11]  Khan, M.J., Junaid, M., Bilal, S., Siddiqi, S.J. and Khan, H.A. (2018). Modelling, Simulation & Control of Non-Linear Magnetic Levitation System. 2018 IEEE 21st International Multi-Topic Conference (INMIC), Karachi, 1-2 November 2018, 1-5.
https://doi.org/10.1109/inmic.2018.8595598
[12]  王刻奇, 杨智, 杨德根. 一类非线性时滞系统的Backstepping控制[J]. 控制工程, 2017, 24(11): 2332-2336.
[13]  刘金琨. RBF神经网络自适应控制及MATLAB仿真[M]. 第2版. 北京: 清华大学出版社, 2019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133