|
对称群S4的极大子群和容许子群
|
Abstract:
基于极大子群与容许子群的概念,从具体的群出发,本文确定了4次对称群S4的所有极大子群、容许子群以及个数,为理解抽象的定义提供了具体的例子,也为丰富该课题的研究做了积极的尝试。
Based on the concept of the maximal subgroups and meet-irreducible subgroups, starting from specific groups, this paper determines all maximal subgroups, meet-irreducible subgroups and their number in the quartic symmetric group S4, providing specific examples for understanding abstract definitions and making positive attempts to enrich the research of this topic.
[1] | 徐明曜. 有限群导引(上) [M]. 北京: 科学出版社, 2007. |
[2] | Guo, W.B. (2000) The Theory of Classes of Groups. Science Press-Kluwer Academic Publishers. |
[3] | Huppert, B. (1967) Endliche Gruppen I. Springer. https://doi.org/10.1007/978-3-642-64981-3 |
[4] | Wang, Y.M. (1996) C-Normality of Groups and Its Properties. Journal of Algebra, 78, 101-108 |
[5] | Guo, W., Skiba, A.N. and Tang, X. (2014) On Boundary Factors and Traces of Subgroups of Finite Groups. Communications in Mathematics and Statistics, 2, 349-361. https://doi.org/10.1007/s40304-015-0043-4 |
[6] | Wu, Z., Guo, W. and Li, B. (2016) On an Open Problem of Guo-Skiba. Frontiers of Mathematics in China, 11, 1603-1612. https://doi.org/10.1007/s11464-016-0572-5 |
[7] | Yi, X. and Skiba, A.N. (2016) Some Notes on Meet-Irreducible Subgroups of Finite Groups. Communications in Algebra, 44, 1548-1556. https://doi.org/10.1080/00927872.2015.1027363 |
[8] | 何金旅, 吴金莲, 张佳. 关于可解群的三个充分必要条件[J]. 青海师范大学学报(自然科学版), 2021, 37(4): 17-20. |
[9] | Miao, L. and Zhang, J. (2018) On a Class of Non-Solvable Groups. Journal of Algebra, 496, 1-10. https://doi.org/10.1016/j.jalgebra.2017.10.016 |
[10] | 孙自行, 崔方达. 4次对称群S4的子群个数及其证明[J]. 阜阳师范学院学报(自然科学版), 2005, 22(4): 13-16, 28. |