全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

分数阶多智能体系统一致性问题
Consensus Problem in Fractional-Order Multi-Agent Systems

DOI: 10.12677/aam.2024.137288, PP. 3031-3038

Keywords: 分数阶多智能体系统,一致性,间歇采样,李亚普诺夫函数
Fractional-Order Multi-Agent Systems
, Consensus, Intermittent Sampling, Lyapunov Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了非线性分数阶多智能体系统中的一致性问题,考虑了间歇采样的情况。首先,通过设计具有间歇采样的控制协议,建立分数阶多智能体的动力学模型。随后,运用图论、李亚普诺夫函数、拉普拉斯变换和逆拉普拉斯变换,解决了具有一个领导者和多个跟随者的一致性问题。最后,我们通过仿真实验,实现了多智能体一致性控制,验证了该方法在实际应用中的有效性和可行性。
In this paper, we investigate the consensus problem in nonlinear fractional-order multi-agent systems considering intermittent sampling. Firstly, by designing control protocols with intermittent sampling, the dynamic model of fractional-order multi-agent systems is established. Then, utilizing graph theory, Lyapunov functions, Laplace transform, and inverse Laplace transform, the consensus problem with one leader and multiple followers is addressed. Finally, through simulation examples, multi-agent consensus control is achieved, validating the effectiveness and feasibility of this approach in practical applications.

References

[1]  Xu, M., An, K., Vu, L.H., Ye, Z., Feng, J. and Chen, E. (2018) Optimizing Multi-Agent Based Urban Traffic Signal Control System. Journal of Intelligent Transportation Systems, 23, 357-369.
https://doi.org/10.1080/15472450.2018.1501273
[2]  Sene, N. (2020) Stability Analysis of Electrical RLC Circuit Described by the Caputo-Liouville Generalized Fractional Derivative. Alexandria Engineering Journal, 59, 2083-2090.
https://doi.org/10.1016/j.aej.2020.01.008
[3]  Russell Carpenter, J. (2002) Decentralized Control of Satellite Formations. International Journal of Robust and Nonlinear Control, 12, 141-161.
https://doi.org/10.1002/rnc.680
[4]  Lu, Q., Han, Q., Zhong, C., Zhang, B., Wang, J., Liu, S., et al. (2017) Finite-Time Consensus Analysis under Directed Communication Topologies for Multi-Agent Systems. IFAC-PapersOnLine, 50, 619-624.
https://doi.org/10.1016/j.ifacol.2017.08.055
[5]  Sarkar, N. and Deb, A.K. (2022) Leader-Follower Formation of Second-Order Nonlinear Multi-Agent Systems by Adaptive Neural Networks with Novel Kernel. IFAC-PapersOnLine, 55, 758-764.
https://doi.org/10.1016/j.ifacol.2022.04.124
[6]  Chen, L., Li, X., Wu, R., Lopes, A.M., Li, X. and Zhu, M. (2022) Guaranteed Cost Consensus for a Class of Fractional-Order Uncertain Multi-Agent Systems with State Time Delay. International Journal of Control, Automation and Systems, 20, 3487-3500.
https://doi.org/10.1007/s12555-021-0009-0
[7]  Bai, J., Wen, G., Rahmani, A. and Yu, Y. (2015) Distributed Formation Control of Fractional-Order Multi-Agent Systems with Absolute Damping and Communication Delay. International Journal of Systems Science, 46, 2380-2392.
https://doi.org/10.1080/00207721.2014.998411
[8]  Wang, X., Wu, H. and Cao, J. (2020) Global Leader-Following Consensus in Finite Time for Fractional-Order Multi-Agent Systems with Discontinuous Inherent Dynamics Subject to Nonlinear Growth. Nonlinear Analysis: Hybrid Systems, 37, Article ID: 100888.
https://doi.org/10.1016/j.nahs.2020.100888
[9]  Yu, Z., Jiang, H. and Hu, C. (2015) Leader-following Consensus of Fractional-Order Multi-Agent Systems under Fixed Topology. Neurocomputing, 149, 613-620.
https://doi.org/10.1016/j.neucom.2014.08.013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133