|
湖北利川耕地土壤有效硼含量及分布特征
|
Abstract:
采集、检测、统计并分析了湖北省利川市耕地土样的有效硼含量。结果表明,有效硼点位均值0.345 ± 0.218 mg/kg,含量较低,变幅0.057~2.208 mg/kg,变异系数63.32%,中等变异;80%以上低于临界值,应全面加强硼肥的推广应用。空间分布差异较明显,中部相对较高,城区正南的毛坝、正北部的柏杨坝及齐跃山脉以西的建南、谋道较低,建南、毛坝的所有点位,南坪、柏杨坝、谋道90%的点位低于临界值。水旱不同利用类型和海拔差异对耕地有效硼影响较小,水田略高于旱地,高山 > 低山 > 二高山。不同母岩母质发育的土类有一定差异,河流冲积物 > 第四纪黏土 > 碳酸盐岩 > 泥质砂页岩 > 紫色页岩 > 石英砂岩;潮土 > 黄棕壤 > 黄壤 > 棕壤 > 石灰土 > 紫色土。土壤酸碱性及有机质含量是影响耕地有效硼的主要因素,相关性分析表明,利川耕地有效硼与土壤有机质及pH呈极显著正相关。
The effective boron content of cultivated land soil samples in Lichuan City, Hubei Province was collected, detected, statistically analyzed, and analyzed. The results showed that the average effective boron concentration was 0.345 ± 0.218 mg/kg, with a low content and a range of 0.057~2.208 mg/kg. The coefficient of variation was 63.32%, indicating moderate variation; More than 80% are below the critical value, and the promotion and application of boron fertilizer should be comprehensively strengthened. There are significant differences in spatial distribution, with the central part being relatively high. Maoba in the south of the urban area, Baiyangba in the north, and Jiannan and Moudao to the west of the Qiyue Mountains are relatively low. Among all the points in Jiannan and Maoba, 90% of the points in Nanping, Baiyangba, and Moudao are below the critical value. The different utilization types and altitude differences of water and drought have a relatively small impact on the effective boron of cultivated land, with paddy fields slightly higher than dry lands, with high mountains > low mountains > two high mountains. There are certain differences in the soil types developed by different parent rocks, with river alluvial deposits > Quaternary clay > carbonate rocks > muddy sand shale > purple shale > quartz sandstone; Chao soil > yellow brown soil > yellow soil > brown soil > lime soil > purple soil. Soil acidity, alkalinity, and organic matter content are the main factors affecting available boron in cultivated land. Correlation analysis shows that available boron in Lichuan cultivated land is highly significantly positively correlated with soil organic matter and pH.
[1] | 赵书军, 梅东海, 陈国华, 等. 鄂西南植烟土壤微量元素分布及演变特点[J]. 土壤, 2005, 37(6): 674-678. |
[2] | 毕庆文, 王海明, 陈国华, 等. 鄂西南植烟土壤养分状况分析[J]. 中国烟草科学, 2007, 28(6): 22-26. |
[3] | 袁家富, 徐祥玉, 赵书军, 等. 恩施烟区土壤养分状况调查[J]. 中国烟草科学, 2011, 32(S1): 93-98. |
[4] | 黎根, 吴风光, 汪健, 等. 植烟土壤有效态微量元素分析评价及对策[J]. 中国烟草科学, 2011, 32(S1): 87-92. |
[5] | 田瑞, 胡红菊, 陈启亮, 等. 湖北省砂梨5个主产县梨园土壤养分状况调查与分析[J]. 长江大学学报(自科版), 2013, 10(29): 7-10, 4-5. |
[6] | 全国土壤普查办公室. 中国土壤[M]. 北京: 中国农业出版社, 1998. |
[7] | 刘武定. 微量元素营养与微肥施用[M]. 北京: 中国农业出版社, 1995: 1-2. |
[8] | 罗建新, 石丽红, 龙世平. 湖南主产烟区土壤养分状况与评价[J]. 湖南农业大学学报(自然科学版), 2005, 31(4): 376-380. |
[9] | 雷志栋, 杨诗秀, 许志荣, G.瓦肖尔. 土壤特性空间变异性初步研究[J]. 水利学报, 1985(9): 10-21. |
[10] | 彭克明, 裴保义. 农业化学(总论) [M]. 北京: 中国农业出版社, 1979: 152-153. |
[11] | 宋志声. 论硼肥在植物生长中的作用及施用[J]. 辽宁化工, 2012, 41(11): 1169-1171. |
[12] | 邵建华, 王洪涛, 刘金友, 等. 硼肥的应用现状及发展前景[J]. 化肥工业, 2013, 40(3): 13-15. |
[13] | 尚平染. 硼肥的作用及施用方法[J]. 现代农村科技, 2019(5): 44. |
[14] | 宋时奎, 李文华, 严红, 等. 土壤性质与硼有效性的关系[J]. 东北农业大学, 2004, 35(1): 113-118. |
[15] | 黎娟, 邓小华, 王建波, 等. 喀斯特地区植烟土壤有效硼含量分布及其影响因素[J]. 土壤, 2013, 45(6): 1055-1061. |
[16] | 陈初红, 邹忠, 张炳宁. 墨竹工卡县耕地土壤有效硼含量状况分析[J]. 现代农业科技, 2011(13): 267-268. |
[17] | 郑丹, 李少泉, 梁运献. 广西区耕地土壤有效硼含量现状分析与生产对策[J]. 广西农学报, 2015, 30(4): 33-37. |
[18] | 张世昌, 张加明, 冯发华, 等. 福建耕地土壤有效硼空间分布及影响因素[J]. 中国农技推广, 2021, 37(5): 47-50. |
[19] | 陈燕华. 泉州市耕地土壤有效硼含量丰缺状况评价与影响因素分析[J]. 福建农业科技, 2023, 54(4): 69-74. |
[20] | 陈娟. 连江县耕地土壤有效硼含量现状与施肥建议[J]. 福建农业科技, 2014(5): 5-7. |
[21] | 张春, 周冀衡, 杨荣生, 等. 云南曲靖不同海拔烟区土壤和烟叶硼含量的分布状况及相关性[J]. 中国烟草学报, 2010, 16(6): 48-53. |
[22] | 秦建成. 重庆市植烟区土壤硼素含量特征研究[J]. 安徽农业科学, 2009, 37(28): 13747-13749. |
[23] | 金立新, 唐金荣, 刘爱华, 等. 成都地区土壤硼元素含量及其养分管理建议[J]. 第四纪研究, 2005, 25(3): 363-369. |
[24] | 王明秀, 桂召贵. 繁昌县耕地有效硼、锌含量及其施肥[J]. 安徽农学通报, 1996(4): 54-55. |