|
RSRC1在非小细胞肺癌中的表达及生物学功能探究
|
Abstract:
目的:基于生物信息学分析以及qPCR技术探究RSRC1在非小细胞肺癌(Non-small cell lung cancer, NSCLC)中的表达和临床价值。方法:结合癌症基因组图谱等多种数据库分析RSRC1在肿瘤中的表达与NSCLC病人的预后、病理学特征以及肿瘤免疫之间的关系并对RSRC1及其相关基因进行富集分析。通过qPCR技术验证RSRC1在NSCLC细胞株中的表达。结果:RSRC1在NSCLC以及其主要亚型中均表达升高。RSRC1的表达水平在NSCLC中与患者的预后、临床病理特征、免疫细胞以及免疫微环境均密切相关。RSRC1在NSCLC中可能参与细胞周期、DNA复制等生物学过程。RSRC1在NSCLC细胞株中mRNA表达升高。结论:RSRC1是NSCLC中一种重要的生物标志物,有成为NSCLC治疗靶点的潜力。
Objective: Exploring the expression and clinical value of RSRC1 in NSCLC based on bioinformatics analysis and qPCR technology. Methods: Analyzing the relationship between the expression of RSRC1 in tumors and the prognosis, pathological characteristics, and tumor immunity of NSCLC patients by combining multiple databases such as the Cancer Genome Atlas (TCGA), and performing enrichment analysis on RSRC1 and its related genes, verifying the expression of RSRC1 in NSCLC cell lines through qPCR technology. Results: RSRC1 is upregulated in NSCLC and its major subtypes. The expression level of RSRC1 is closely related to the prognosis, clinical pathological indicators, immune cells, and immune microenvironment of NSCLC patients. RSRC1 may be involved in biological processes such as cell cycle and DNA replication in NSCLC. RSRC1 mRNA expression is elevated in NSCLC cell lines. Conclusion: RSRC1 is an important biomarker of NSCLC and has potential as a therapeutic target for NSCLC.
[1] | Siegel, R.L., Giaquinto, A.N. and Jemal, A. (2024) Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12-49. https://doi.org/10.3322/caac.21820 |
[2] | Chen, Z., Fillmore, C.M., Hammerman, P.S., Kim, C.F. and Wong, K. (2014) Non-Small-Cell Lung Cancers: A Heterogeneous Set of Diseases. Nature Reviews Cancer, 14, 535-546. https://doi.org/10.1038/nrc3775 |
[3] | Tang, J., Yu, J.X., Hubbard-Lucey, V.M., Neftelinov, S.T., Hodge, J.P. and Lin, Y. (2018) Trial Watch: The Clinical Trial Landscape for PD1/PDL1 Immune Checkpoint Inhibitors. Nature Reviews Drug Discovery, 17, 854-855. https://doi.org/10.1038/nrd.2018.210 |
[4] | Carbone, D.P., Reck, M., Paz-Ares, L., Creelan, B., Horn, L., Steins, M., et al. (2017) First-Line Nivolumab in Stage IV or Recurrent Non-Small-Cell Lung Cancer. New England Journal of Medicine, 376, 2415-2426. https://doi.org/10.1056/nejmoa1613493 |
[5] | Wu, J.Y. and Maniatis, T. (1993) Specific Interactions between Proteins Implicated in Splice Site Selection and Regulated Alternative Splicing. Cell, 75, 1061-1070. https://doi.org/10.1016/0092-8674(93)90316-i |
[6] | Cazalla, D., Newton, K. and Cáceres, J.F. (2005) A Novel Sr-Related Protein Is Required for the Second Step of Pre-mRNA Splicing. Molecular and Cellular Biology, 25, 2969-2980. https://doi.org/10.1128/mcb.25.8.2969-2980.2005 |
[7] | Gill, G. (2005) Something about SUMO Inhibits Transcription. Current Opinion in Genetics & Development, 15, 536-541. https://doi.org/10.1016/j.gde.2005.07.004 |
[8] | Li, W., Li, X., Gao, L. and You, C. (2020) Integrated Analysis of the Functions and Prognostic Values of RNA Binding Proteins in Lung Squamous Cell Carcinoma. Frontiers in Genetics, 11, Article No. 185. https://doi.org/10.3389/fgene.2020.00185 |
[9] | Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021) Clusterprofiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. The Innovation, 2, Article ID: 100141. https://doi.org/10.1016/j.xinn.2021.100141 |
[10] | Zeng, D., Ye, Z., Shen, R., Yu, G., Wu, J., Xiong, Y., et al. (2021) IOBR: Multi-Omics Immuno-Oncology Biological Research to Decode Tumor Microenvironment and Signatures. Frontiers in Immunology, 12, Article ID: 687975. https://doi.org/10.3389/fimmu.2021.687975 |
[11] | Li, T., Fan, J., Wang, B., et al. (2017) TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Research, 77, e108-e110. |
[12] | Yoshihara, K., Shahmoradgoli, M., Martínez, E., Vegesna, R., Kim, H., Torres-Garcia, W., et al. (2013) Inferring Tumour Purity and Stromal and Immune Cell Admixture from Expression Data. Nature Communications, 4, Article No. 2612. https://doi.org/10.1038/ncomms3612 |
[13] | Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660 |
[14] | Kwong, G.A., Ghosh, S., Gamboa, L., Patriotis, C., Srivastava, S. and Bhatia, S.N. (2021) Synthetic Biomarkers: A Twenty-First Century Path to Early Cancer Detection. Nature Reviews Cancer, 21, 655-668. https://doi.org/10.1038/s41568-021-00389-3 |
[15] | Carlino, M.S., Larkin, J. and Long, G.V. (2021) Immune Checkpoint Inhibitors in Melanoma. The Lancet, 398, 1002-1014. https://doi.org/10.1016/s0140-6736(21)01206-x |
[16] | Baker, D.J., Arany, Z., Baur, J.A., Epstein, J.A. and June, C.H. (2023) CAR T Therapy Beyond Cancer: The Evolution of a Living Drug. Nature, 619, 707-715. https://doi.org/10.1038/s41586-023-06243-w |
[17] | Vesely, M.D., Zhang, T. and Chen, L. (2022) Resistance Mechanisms to Anti-Pd Cancer Immunotherapy. Annual Review of Immunology, 40, 45-74. https://doi.org/10.1146/annurev-immunol-070621-030155 |
[18] | Perez, Y., Menascu, S., Cohen, I., Kadir, R., Basha, O., Shorer, Z., et al. (2018) RSRC1 Mutation Affects Intellect and Behaviour through Aberrant Splicing and Transcription, Downregulating IGFBP3. Brain, 141, 961-970. https://doi.org/10.1093/brain/awy045 |
[19] | Potkin, S.G., Turner, J.A., Fallon, J.A., Lakatos, A., Keator, D.B., Guffanti, G., et al. (2008) Gene Discovery through Imaging Genetics: Identification of Two Novel Genes Associated with Schizophrenia. Molecular Psychiatry, 14, 416-428. https://doi.org/10.1038/mp.2008.127 |
[20] | Yu, S., Gautam, N., Quan, M. and Gao, Y. (2019) RSRC1 Suppresses Gastric Cancer Cell Proliferation and Migration by Regulating PTEN Expression. Molecular Medicine Reports, 20, 1747-1753. https://doi.org/10.3892/mmr.2019.10409 |
[21] | 周家田, 尚观胜, 张聪, 等. RSRC1通过靶向调控PTEN/PI3K/AKT通路抑制食管鳞状细胞癌的增殖和转移[J]. 新医学, 2023, 54(10): 749-753. |
[22] | McDaniel, L.D., Conkrite, K.L., Chang, X., Capasso, M., Vaksman, Z., Oldridge, D.A., et al. (2017) Common Variants Upstream of MLF1 at 3q25 and within CPZ at 4p16 Associated with Neuroblastoma. PLOS Genetics, 13, e1006787. https://doi.org/10.1371/journal.pgen.1006787 |
[23] | 仇玮祎. 雌激素受体共调节因子RSRC1的生物学功能研究[D]: [博士学位论文]. 北京: 中国人民解放军军事医学科学院, 2009. |
[24] | Kasavi, C. (2023) Idiopathic Pulmonary Arterial Hypertension: Network-Based Integration of Multi-Omics Data Reveals New Molecular Signatures and Candidate Drugs. OMICS: A Journal of Integrative Biology, 27, 315-326. https://doi.org/10.1089/omi.2023.0066 |
[25] | Anderson, N.M. and Simon, M.C. (2020) The Tumor Microenvironment. Current Biology, 30, R921-R925. https://doi.org/10.1016/j.cub.2020.06.081 |
[26] | Brassart-Pasco, S., Brézillon, S., Brassart, B., Ramont, L., Oudart, J. and Monboisse, J.C. (2020) Tumor Microenvironment: Extracellular Matrix Alterations Influence Tumor Progression. Frontiers in Oncology, 10, Article No. 397. https://doi.org/10.3389/fonc.2020.00397 |
[27] | Xu, C., Sui, S., Shang, Y., Yu, Z., Han, J., Zhang, G., et al. (2020) The Landscape of Immune Cell Infiltration and Its Clinical Implications of Pancreatic Ductal Adenocarcinoma. Journal of Advanced Research, 24, 139-148. https://doi.org/10.1016/j.jare.2020.03.009 |
[28] | Bagaev, A., Kotlov, N., Nomie, K., Svekolkin, V., Gafurov, A., Isaeva, O., et al. (2021) Conserved Pan-Cancer Microenvironment Subtypes Predict Response to Immunotherapy. Cancer Cell, 39, 845-865.e7. https://doi.org/10.1016/j.ccell.2021.04.014 |
[29] | Speiser, D.E., Chijioke, O., Schaeuble, K. and Münz, C. (2023) CD4+ T Cells in Cancer. Nature Cancer, 4, 317-329. https://doi.org/10.1038/s43018-023-00521-2 |
[30] | Bruni, D., Angell, H.K. and Galon, J. (2020) The Immune Contexture and Immunoscore in Cancer Prognosis and Therapeutic Efficacy. Nature Reviews Cancer, 20, 662-680. https://doi.org/10.1038/s41568-020-0285-7 |
[31] | Liu, J., Peng, Y. and Wei, W. (2022) Cell Cycle on the Crossroad of Tumorigenesis and Cancer Therapy. Trends in Cell Biology, 32, 30-44. https://doi.org/10.1016/j.tcb.2021.07.001 |