全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

细胞死亡在肿瘤中的研究进展
Advancements in the Research of Cell Death in Tumors

DOI: 10.12677/acm.2024.1471987, PP. 96-101

Keywords: 细胞死亡,肿瘤,综述
Cell Death
, Tumors, Review

Full-Text   Cite this paper   Add to My Lib

Abstract:

细胞死亡机制在肿瘤的发生、发展和治疗中扮演着关键角色。本文综述了细胞死亡的不同类型及其在肿瘤发病中的机制,特别关注了坏死性凋亡,细胞焦亡、铁死亡、铜死亡和双硫死亡的关键调控机制。并尝试对如何针对这些细胞死亡方式进行治疗开发做出讨论以期为癌症患者开发基于细胞死亡的新药提供思路。
Cell death mechanisms play crucial roles in the occurrence, development, and treatment of tumors. This article reviews different types of cell death and their mechanisms in tumorigenesis, with a particular focus on necroptosis, ferroptosis, pyroptosis, and apoptosis, highlighting key regulatory mechanisms. It also attempts to discuss how to develop treatments targeting these cell death pathways, aiming to provide insights for the development of new drugs based on cell death for cancer patients.

References

[1]  Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
[2]  Causeret, F., Sumia, I. and Pierani, A. (2015) Kremen1 and Dickkopf1 Control Cell Survival in a Wnt-Independent Manner. Cell Death & Differentiation, 23, 323-332.
https://doi.org/10.1038/cdd.2015.100
[3]  Gottesman, M.M., Lavi, O., Hall, M.D. and Gillet, J. (2016) Toward a Better Understanding of the Complexity of Cancer Drug Resistance. Annual Review of Pharmacology and Toxicology, 56, 85-102.
https://doi.org/10.1146/annurev-pharmtox-010715-103111
[4]  B?ck, M., Yurdagul, A., Tabas, I., ??rni, K. and Kovanen, P.T. (2019) Inflammation and Its Resolution in Atherosclerosis: Mediators and Therapeutic Opportunities. Nature Reviews Cardiology, 16, 389-406.
https://doi.org/10.1038/s41569-019-0169-2
[5]  Kist, M. and Vucic, D. (2021) Cell Death Pathways: Intricate Connections and Disease Implications. The EMBO Journal, 40, e106700.
https://doi.org/10.15252/embj.2020106700
[6]  Liu, Y., Bhattarai, P., Dai, Z. and Chen, X. (2019) Photothermal Therapy and Photoacoustic Imaging via Nanotheranostics in Fighting Cancer. Chemical Society Reviews, 48, 2053-2108.
https://doi.org/10.1039/c8cs00618k
[7]  Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541.
https://doi.org/10.1038/s41418-017-0012-4
[8]  Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P. and Kroemer, G. (2019) The Molecular Machinery of Regulated Cell Death. Cell Research, 29, 347-364.
https://doi.org/10.1038/s41422-019-0164-5
[9]  Shan, B., Pan, H., Najafov, A. and Yuan, J. (2018) Necroptosis in Development and Diseases. Genes & Development, 32, 327-340.
https://doi.org/10.1101/gad.312561.118
[10]  Dhuriya, Y.K. and Sharma, D. (2018) Necroptosis: A Regulated Inflammatory Mode of Cell Death. Journal of Neuroinflammation, 15, Article No. 199.
https://doi.org/10.1186/s12974-018-1235-0
[11]  Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., et al. (2005) Chemical Inhibitor of Nonapoptotic Cell Death with Therapeutic Potential for Ischemic Brain Injury. Nature Chemical Biology, 1, 112-119.
https://doi.org/10.1038/nchembio711
[12]  Degterev, A., Hitomi, J., Germscheid, M., Chen, I.L., Korkina, O., Teng, X., et al. (2008) Identification of RIP1 Kinase as a Specific Cellular Target of Necrostatins. Nature Chemical Biology, 4, 313-321.
https://doi.org/10.1038/nchembio.83
[13]  Yuan, J., Amin, P. and Ofengeim, D. (2018) Necroptosis and RIPK1-Mediated Neuroinflammation in CNS Diseases. Nature Reviews Neuroscience, 20, 19-33.
https://doi.org/10.1038/s41583-018-0093-1
[14]  Luedde, M., Lutz, M., Carter, N., Sosna, J., Jacoby, C., Vucur, M., et al. (2014) RIP3, a Kinase Promoting Necroptotic Cell Death, Mediates Adverse Remodelling after Myocardial Infarction. Cardiovascular Research, 103, 206-216.
https://doi.org/10.1093/cvr/cvu146
[15]  Oerlemans, M.I.F.J., Liu, J., Arslan, F., Ouden, K., Middelaar, B.J., Doevendans, P.A., et al. (2012) Inhibition of RIP1-Dependent Necrosis Prevents Adverse Cardiac Remodeling after Myocardial Ischemia-Reperfusion in vivo. Basic Research in Cardiology, 107, 270.
https://doi.org/10.1007/s00395-012-0270-8
[16]  Kung, J.E. and Jura, N. (2019) Prospects for Pharmacological Targeting of Pseudokinases. Nature Reviews Drug Discovery, 18, 501-526.
https://doi.org/10.1038/s41573-019-0018-3
[17]  Kwok, A.J., Mentzer, A. and Knight, J.C. (2020) Host Genetics and Infectious Disease: New Tools, Insights and Translational Opportunities. Nature Reviews Genetics, 22, 137-153.
https://doi.org/10.1038/s41576-020-00297-6
[18]  Harris, P.A., King, B.W., Bandyopadhyay, D., Berger, S.B., Campobasso, N., Capriotti, C.A., et al. (2016) Dna-Encoded Library Screening Identifies Benzo[b][1,4]Oxazepin-4-Ones as Highly Potent and Monoselective Receptor Interacting Protein 1 Kinase Inhibitors. Journal of Medicinal Chemistry, 59, 2163-2178.
https://doi.org/10.1021/acs.jmedchem.5b01898
[19]  Harris, P.A., Berger, S.B., Jeong, J.U., Nagilla, R., Bandyopadhyay, D., Campobasso, N., et al. (2017) Discovery of a First-in-Class Receptor Interacting Protein 1 (RIP1) Kinase Specific Clinical Candidate (GSK2982772) for the Treatment of Inflammatory Diseases. Journal of Medicinal Chemistry, 60, 1247-1261.
https://doi.org/10.1021/acs.jmedchem.6b01751
[20]  Frank, D. and Vince, J.E. (2018) Pyroptosis versus Necroptosis: Similarities, Differences, and Crosstalk. Cell Death & Differentiation, 26, 99-114.
https://doi.org/10.1038/s41418-018-0212-6
[21]  Kayagaki, N., Warming, S., Lamkanfi, M., Walle, L.V., Louie, S., Dong, J., et al. (2011) Non-Canonical Inflammasome Activation Targets Caspase-11. Nature, 479, 117-121.
https://doi.org/10.1038/nature10558
[22]  Martinon, F., Burns, K. and Tschopp, J. (2002) The Inflammasome: A Molecular Platform Triggering Activation of Inflammatory Caspases and Processing of proIL-β. Molecular Cell, 10, 417-426.
https://doi.org/10.1016/s1097-2765(02)00599-3
[23]  Yu, P., Zhang, X., Liu, N., Tang, L., Peng, C. and Chen, X. (2021) Pyroptosis: Mechanisms and Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 128.
https://doi.org/10.1038/s41392-021-00507-5
[24]  Fearnhead, H.O., Vandenabeele, P. and Vanden Berghe, T. (2017) How Do We Fit Ferroptosis in the Family of Regulated Cell Death? Cell Death & Differentiation, 24, 1991-1998.
https://doi.org/10.1038/cdd.2017.149
[25]  Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282.
https://doi.org/10.1038/s41580-020-00324-8
[26]  Conrad, M., Lorenz, S.M. and Proneth, B. (2021) Targeting Ferroptosis: New Hope for As-yet-Incurable Diseases. Trends in Molecular Medicine, 27, 113-122.
https://doi.org/10.1016/j.molmed.2020.08.010
[27]  Lei, G., Zhuang, L. and Gan, B. (2022) Targeting Ferroptosis as a Vulnerability in Cancer. Nature Reviews Cancer, 22, 381-396.
https://doi.org/10.1038/s41568-022-00459-0
[28]  Zhang, Y., Tan, H., Daniels, J.D., Zandkarimi, F., Liu, H., Brown, L.M., et al. (2019) Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model. Cell Chemical Biology, 26, 623-633.
https://doi.org/10.1016/j.chembiol.2019.01.008
[29]  Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., et al. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261.
https://doi.org/10.1126/science.abf0529
[30]  Lichtmannegger, J., Leitzinger, C., Wimmer, R., Schmitt, S., Schulz, S., Kabiri, Y., et al. (2016) Methanobactin Reverses Acute Liver Failure in a Rat Model of Wilson Disease. Journal of Clinical Investigation, 126, 2721-2735.
https://doi.org/10.1172/jci85226
[31]  Liu, X., Nie, L., Zhang, Y., Yan, Y., Wang, C., Colic, M., et al. (2023) Actin Cytoskeleton Vulnerability to Disulfide Stress Mediates Disulfidptosis. Nature Cell Biology, 25, 404-414.
https://doi.org/10.1038/s41556-023-01091-2
[32]  Liu, X., Zhuang, L. and Gan, B. (2024) Disulfidptosis: Disulfide Stress-Induced Cell Death. Trends in Cell Biology, 34, 327-337.
https://doi.org/10.1016/j.tcb.2023.07.009

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133