全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物对西北地区农田面源污染影响研究进展
Research Progress on the Effect of Plants on Farmland Surface Pollution in Northwest China

DOI: 10.12677/hjss.2024.123013, PP. 107-113

Keywords: 农田面源污染,植物根系,氮迁移转化,污染控制
Farmland Surface Pollution
, Plant Root System, Nitrogen Transport Transformation, Pollution Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,农业化学品的过量使用增加了农田面源污染的风险,特别在西北干旱半干旱地区,这种污染对当地水资源和生态系统造成了严重影响。本文系统梳理了国内外关于农田面源污染控制技术,着重阐述了植物根系对土壤性质和氮迁移转化的影响,并提出了建立农田植物根系特征为主的面源污染控制方法的建议。通过开展对农田氮污染控制效果评估,可有效控制农田径流中氮污染,为城市生态文明建设和面源污染防控提供重要借鉴。这种基于植物根系的污染控制方法有望在农业生产实践中得到应用,助力改善农田面源污染问题,促进生态环境的健康与可持续发展。
In recent years, the excessive use of agrochemicals has increased the risk of farmland surface source pollution, especially in the arid and semi-arid regions of Northwest China, and such pollution has caused serious impacts on local water resources and ecosystems. In this paper, we systematically sorted out the domestic and international technologies on farmland surface source pollution control, focused on the influence of plant root system on soil properties and nitrogen migration and transformation, and put forward a proposal to establish a surface source pollution control method dominated by the characteristics of plant root system in farmland. By carrying out the assessment of the effect of controlling nitrogen pollution in farmland, nitrogen pollution in farmland runoff can be effectively controlled, which provides an important reference for the construction of urban ecological civilization and the prevention and control of surface source pollution. This pollution control method based on plant root system is expected to be applied in agricultural production practice, helping to improve the problem of farmland surface source pollution and promote the healthy and sustainable development of ecological environment.

References

[1]  Abdel daiem, M.M., Hatata, A., El-Gohary, E.H., Abd-Elhamid, H.F. and Said, N. (2020) Application of an Artificial Neural Network for the Improvement of Agricultural Drainage Water Quality Using a Submerged Biofilter. Environmental Science and Pollution Research, 28, 5854-5866.
https://doi.org/10.1007/s11356-020-10964-0
[2]  中华人民共和国生态环境部, 中华人民共和国国家统计局, 中华人民共和国农业农村部. 第二次全国污染源普查公报[EB/OL].
https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/t20200610_783547.html, 2020-06-08.
[3]  Arias-Pai?, M., Tsuchihashi, R., Gress, A., Miller, D., Papendick, J. and Kennedy, A.M. (2022) Treatment of Selenium-Laden Agricultural Drainage Water Using a Full-Scale Bioreactor. Journal of Environmental Engineering, 148, Article 04022014.
https://doi.org/10.1061/(asce)ee.1943-7870.0001990
[4]  Hou, X., Zhou, F., Leip, A., Fu, B., Yang, H., Chen, Y., et al. (2016) Spatial Patterns of Nitrogen Runoff from Chinese Paddy Fields. Agriculture, Ecosystems & Environment, 231, 246-254.
https://doi.org/10.1016/j.agee.2016.07.001
[5]  雷琪. 黄土高原玉米光温生产潜力及种植区适宜性评价[D]: [硕士学位论文]. 咸阳: 西北农林科技大学, 2022.
[6]  Chang, A., Qiong, H. and Zheng, B. (2022) Analysis of Agricultural Non-Point Source Pollution in Henan Province (China) from the Perspective of Time and Space. Nature Environment and Pollution Technology, 21, 268-274.
https://doi.org/10.46488/nept.2022.v21i01.031
[7]  Ashour, M.A., Aly, T.E. and Hasan, A.E. (2020) New Technique for Preparing and Reusing Agricultural Drainage Water Safely in Irrigation. Limnological Review, 20, 123-133.
https://doi.org/10.2478/limre-2020-0013
[8]  Carstensen, M.V., Zak, D., van’t Veen, S.G.M., Wisniewska, K., Ovesen, N.B., Kronvang, B., et al. (2021) Nitrogen Removal and Greenhouse Gas Fluxes from Integrated Buffer Zones Treating Agricultural Drainage Water. Science of the Total Environment, 774, Article 145070.
https://doi.org/10.1016/j.scitotenv.2021.145070
[9]  兰志梅. 氮素对制种苜蓿根系特征、根瘤菌特性和种子产量的影响[D]: [硕士学位论文]. 乌鲁木齐: 新疆农业大学, 2021.
[10]  赵雅姣. 紫花苜蓿/禾本科牧草间作优势及其氮高效机理和土壤微生态效应研究[D]: [博士学位论文]. 兰州: 甘肃农业大学, 2020.
[11]  Aviles, D., Wesstr?m, I. and Joel, A. (2020) Effect of Vegetation Removal on Soil Erosion and Bank Stability in Agricultural Drainage Ditches. Land, 9, Article 441.
https://doi.org/10.3390/land9110441
[12]  Erickson, A.J., Gulliver, J.S. and Weiss, P.T. (2012) Capturing Phosphates with Iron Enhanced Sand Filtration. Water Research, 46, 3032-3042.
https://doi.org/10.1016/j.watres.2012.03.009
[13]  Li, X., Zhang, W., Wu, J., Li, H., Zhao, T., Zhao, C., et al. (2021) Loss of Nitrogen and Phosphorus from Farmland Runoff and the Interception Effect of an Ecological Drainage Ditch in the North China Plain—A Field Study in a Modern Agricultural Park. Ecological Engineering, 169, Article 106310.
https://doi.org/10.1016/j.ecoleng.2021.106310
[14]  Jiang, C., Li, J., Li, H. and Li, Y. (2019) Nitrogen Retention and Purification Efficiency from Rainfall Runoff via Retrofitted Bioretention Cells. Separation and Purification Technology, 220, 25-32.
https://doi.org/10.1016/j.seppur.2019.03.036
[15]  Cui, Z., Huang, Z., Liu, Y., López-Vicente, M. and Wu, G. (2022) Natural Compensation Mechanism of Soil Water Infiltration through Decayed Roots in Semi-Arid Vegetation Species. Science of the Total Environment, 819, Article 151985.
https://doi.org/10.1016/j.scitotenv.2021.151985
[16]  Lesturgez, G., Poss, R., Hartmann, C., Bourdon, E., Noble, A. and Ratana-Anupap, S. (2004) Roots of Stylosanthes Hamata Create Macropores in the Compact Layer of a Sandy Soil. Plant and Soil, 260, 101-109.
https://doi.org/10.1023/b:plso.0000030184.24866.aa
[17]  Cai, Z., Li, Q., Bai, H., Zhu, C., Tang, G., Zhou, H., et al. (2022) Interactive Effects of Aquatic Nitrogen and Plant Biomass on Nitrous Oxide Emission from Constructed Wetlands. Environmental Research, 213, Article 113716.
https://doi.org/10.1016/j.envres.2022.113716
[18]  Meek, B.D., Rechel, E.A., Carter, L.M. and DeTar, W.R. (1989) Changes in Infiltration under Alfalfa as Influenced by Time and Wheel Traffic. Soil Science Society of America Journal, 53, 238-241.
https://doi.org/10.2136/sssaj1989.03615995005300010042x
[19]  柴雯, 王根绪, 李元寿, 等. 长江源区不同植被覆盖下土壤水分对降水的响应[J]. 冰川冻土, 2008, 30(2): 329-337.
[20]  Janke, B.D., Finlay, J.C. and Hobbie, S.E. (2017) Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution. Environmental Science & Technology, 51, 9569-9579.
https://doi.org/10.1021/acs.est.7b02225
[21]  陈文音, 陈章和, 何其凡, 等. 两种不同根系类型湿地植物的根系生长[J]. 生态学报, 2007, 27(2): 450-458.
[22]  Zuo, X., Zhang, H. and Yu, J. (2020) Microbial Diversity for the Improvement of Nitrogen Removal in Stormwater Bioretention Cells with Three Aquatic Plants. Chemosphere, 244, Article 125626.
https://doi.org/10.1016/j.chemosphere.2019.125626
[23]  Prado, B., Duwig, C., Etchevers, J., Gaudet, J.P. and Vauclin, M. (2011) Nitrate Fate in a Mexican Andosol: Is It Affected by Preferential Flow? Agricultural Water Management, 98, 1441-1450.
https://doi.org/10.1016/j.agwat.2011.04.013
[24]  王彬俨. 北京昌平区农地土壤优先路径特征及其对硝态氮运移的影响[D]: [硕士学位论文]. 北京: 北京林业大学, 2013.
[25]  Galdos, M.V., Brown, E., Rosolem, C.A., Pires, L.F., Hallett, P.D. and Mooney, S.J. (2020) Brachiaria Species Influence Nitrate Transport in Soil by Modifying Soil Structure with Their Root System. Scientific Reports, 10, Article No. 5072.
https://doi.org/10.1038/s41598-020-61986-0
[26]  Zhang, S.X., Zhang, S.H., Zhang, Y., et al. (2019) Impacts of Vegetation on Quantity and Quality of Runoff from Green Roofs. Environmental Science, 40, 3618-3625.
[27]  Fan, G., Li, Z., Wang, S., Huang, K. and Luo, J. (2019) Migration and Transformation of Nitrogen in Bioretention System during Rainfall Runoff. Chemosphere, 232, 54-62.
https://doi.org/10.1016/j.chemosphere.2019.05.177
[28]  Yoneyama, T. and Suzuki, A. (2019) Exploration of Nitrate-to-Glutamate Assimilation in Non-Photosynthetic Roots of Higher Plants by Studies of 15N-Tracing, Enzymes Involved, Reductant Supply, and Nitrate Signaling: A Review and Synthesis. Plant Physiology and Biochemistry, 136, 245-254.
https://doi.org/10.1016/j.plaphy.2018.12.011
[29]  Mehmood, T., Gaurav, G.K., Cheng, L., Kleme?, J.J., Usman, M., Bokhari, A. and Lu, J. (2021) A Review on Plant-Microbial Interactions, Functions, Mechanisms and Emerging Trends in Bioretention System to Improve Multi-Contaminated Stormwater Treatment. Journal of Environmental Management, 294, Article 113108.
https://doi.org/10.1016/j.jenvman.2021.113108
[30]  Skorobogatov, A., He, J., Chu, A., Valeo, C. and van Duin, B. (2020) The Impact of Media, Plants and Their Interactions on Bioretention Performance: A Review. Science of the Total Environment, 715, Article 136918.
https://doi.org/10.1016/j.scitotenv.2020.136918

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133