|
Pharmacy Information 2024
基于网络药理学和分子对接探讨酸枣仁、夜交藤、柏子仁对失眠的治疗作用
|
Abstract:
目的:基于网络药理学探究酸枣仁、夜交藤、柏子仁治疗失眠的作用机制。方法:运用TCMSP、PubChem、TTD和STRING等数据库获取酸枣仁、夜交藤及柏子仁治疗失眠的潜在靶点,构建PPl和“中药–活性成分–靶点”网络图。进行GO富集分析和KEGG通路分析,将核心靶点与药物主要活性成分进行分子对接。结果:筛选出药物重要活性成分有谷甾醇、植物甾醇、槲皮素3-O-阿拉伯糖甙等,药物治疗失眠的核心靶点为PPARG、ESR1、PTGS2。GO分析经筛选得相关条目174条,KEGG分析发现19条信号通路。分子对接结果表明关键活性成分与核心靶点都有较好的亲和力。结论:酸枣仁、夜交藤、柏子仁治疗失眠的作用机制是通过谷甾醇、植物甾醇、槲皮素3-O-阿拉伯糖甙等活性成分作用于PPARG、ESR1、PTGS2等关键靶点,抑制氧化应激、内质网应激、炎症反应,影响细胞周期、细胞凋亡、增殖等生理功能,对失眠症起治疗作用。
Goal: Using network pharmacology as a basis, investigate how sour jujube seed, night cross vine, and cypress seed work to treat insomnia. Method: The databases TCMSP, PubChem, TTD, and STRING were utilized to identify possible targets for the usage of night cross vines, cypress seed kernels, and sour jujube kernels in the treatment of insomnia. Network diagrams for “traditional Chinese medicine active ingredient target” and PPl were created. To establish a connection between the key targets and the primary active components of the medication, KEGG pathway analysis and GO enrichment analysis were conducted. Findings: The drug’s significant active components, including quercetin 3-O-arabinose glycoside, phytosterol, and sitosterol, were examined. The three main goals of pharmacological treatment for insomnia were PTGS2, ESR1, and PPARG.19 signal pathways were discovered by KEGG analysis after GO analysis screened 174 pertinent items. The results of molecular docking show that the main active components and core targets have a good affinity. Conclusion: The active ingredients in sour jujube kernel, night cross vine, and cypress kernel, such as quercetin 3-O-arabinose glycoside, act on key targets like PPARG, ESR1, and PTGS2, inhibiting oxidative stress, endoplasmic reticulum stress, and inflammatory response. They also affect physiological functions like cell cycle, apoptosis, and proliferation. All of these effects are therapeutic for insomnia.
[1] | Bollu, P.C. and Kaur, H. (2019) Sleep Medicine: Insomnia and Sleep. Missouri Medicine, 116, 68-75. |
[2] | Van Someren, E.J.W. (2021) Brain Mechanisms of Insomnia: New Perspectives on Causes and Consequences. Physiological Reviews, 101, 995-1046. https://doi.org/10.1152/physrev.00046.2019 |
[3] | Krystal, A.D., Prather, A.A. and Ashbrook, L.H. (2019) The Assessment and Management of Insomnia: An Update. World Psychiatry, 18, 337-352. https://doi.org/10.1002/wps.20674 |
[4] | Sweetman, A., Putland, S., Lack, L., McEvoy, R.D., Adams, R., Grunstein, R., et al. (2021) The Effect of Cognitive Behavioural Therapy for Insomnia on Sedative-Hypnotic Use: A Narrative Review. Sleep Medicine Reviews, 56, Article 101404. https://doi.org/10.1016/j.smrv.2020.101404 |
[5] | 刘梦姣, 付伟, 胡永恒, 等. 中西医治疗失眠的研究进展[J]. 医药导报, 2022, 41(5): 684-686. |
[6] | 国家药典委员会. 中华人民共和国药典(2020年版) [M]. 北京: 中国医药科技出版社, 2020: 5. |
[7] | He, S.R., Zhao, C.B., Zhang, J.X., Wang, J., Wu, B. and Wu, C. (2020) Botanical and Traditional Uses and Phytochemical, Pharmacological, Pharmacokinetic, and Toxicological Characteristics of Ziziphi spinosae Semen: A Review. Evidence-Based Complementary and Alternative Medicine, 2020, Article ID: 5861821. https://doi.org/10.1155/2020/5861821 |
[8] | Xiao, F., Shao, S., Zhang, H., Li, G., Piao, S., Zhao, D., et al. (2022) Neuroprotective Effect of Ziziphi spinosae Semen on Rats with P-Chlorophenylalanine-Induced Insomnia via Activation of GABAA Receptor. Frontiers in Pharmacology, 13, Article 965308. https://doi.org/10.3389/fphar.2022.965308 |
[9] | 贾颖, 郭亚菲, 孙胜杰, 等. 超临界CO2萃取生酸枣仁挥发油的镇静催眠作用研究[J]. 中华中医药杂志, 2018, 33(9): 4181-4183. |
[10] | 韩鹏, 李冀, 胡晓阳, 等. 酸枣仁的化学成分、药理作用及临床应用研究进展[J]. 中医药学报, 2021, 49(2): 110-114. https://doi.org/10.19664/j.cnki.1002-2392.210048 |
[11] | 杜晨晖, 裴香萍, 张敏, 等. 基于1H-NMR代谢组学的酸枣仁改善失眠大鼠睡眠作用机制研究[J]. 中草药, 2019, 50(10): 2405-2412. |
[12] | 秦霞, 张炜. 酸枣仁皂苷B抗高热惊厥的机制[J]. 中国药理学与毒理学杂志, 2023, 37(7): 543. |
[13] | Li, L.B., Kim, Y.W., Wang, Y.H., Bai, L., Zhu, X.D., Zhao, Z.L., et al. (2019) Methanol Extract of Semen Ziziphi spinosae Attenuates Ethanol Withdrawal Anxiety by Improving Neuropeptide Signaling in the Central Amygdala. BMC Complementary and Alternative Medicine, 19, Article No. 147. https://doi.org/10.1186/s12906-019-2546-0 |
[14] | 郑涵文, 刘昕玥, 赵海燕, 等. 基于网络药理学和实验验证探究酸枣仁复方治疗抑郁症的作用机制[J/OL]. 中国实验动物学报, 1-11 http://kns.cnki.net/kcms/detail/11.2986.Q.20240623.1237.006.html, 2024-07-02. |
[15] | 李会涛, 李剑男, 张桐, 等. 酸枣仁皂苷A对抑郁小鼠行为及突触可塑性相关蛋白的作用[J]. 现代食品科技, 2024, 40(2): 36-43. https://doi.org/10.13982/j.mfst.1673-9078.2024.2.0294, 2024-04-07. |
[16] | 李智欣, 杨中平, 石宝霞, 等. 夜交藤中改善睡眠成分的研究[J]. 食品科学, 2007, 28(4): 327-331. |
[17] | Lin, L., Ni, B., Lin, H., Zhang, M., Li, X., Yin, X., et al. (2015) Traditional Usages, Botany, Phytochemistry, Pharmacology and Toxicology of Polygonum multiflorum Thunb.: A Review. Journal of Ethnopharmacology, 159, 158-183. https://doi.org/10.1016/j.jep.2014.11.009 |
[18] | 周静, 许一凡. 柏子仁化学成分与药理活性研究进展[J]. 化学研究, 2019, 30(4): 429-433. https://doi.org/10.14002/j.hxya.2019.04.016 |
[19] | 蒋征奎, 宁二娟, 王学方, 等. 柏子仁抗焦虑作用评价及机制探究[J]. 中南药学, 2021, 19(12): 2540-2544. |
[20] | 卞振华, 张文明, 唐静月, 等. 基于血清代谢组学和网络药理学研究酸枣仁提取物治疗失眠的效应物质及作用机制[J]. 中国中药杂志, 2022, 47(1): 188-202. https://doi.org/10.19540/j.cnki.cjcmm.20210922.702 |
[21] | 佟一鑫, 柏强. 基于网络药理学和分子对接技术探究夜交藤治疗失眠的作用机制[J]. 中医临床研究, 2021, 13(26): 1-5. |
[22] | 倪雨婷, 张欢欢, 赵丹丹, 等. 酸枣仁-柏子仁组分调控睡眠障碍中神经递质的研究[J]. 黑龙江医药, 2023, 36(5): 1000-1004. https://doi.org/10.14035/j.cnki.hljyy.2023.05.003 |
[23] | 熊朝华, 王淑娟, 刘丽莎, 等. 基于网络药理学探究“酸枣仁-柏子仁”药对治疗失眠的作用机制[J]. 河南中医, 2023, 43(3): 385-390. https://doi.org/10.16367/j.issn.1003-5028.2023.03.0078 |
[24] | 郭胜男, 文婷, 卢金清. 基于HS-SPME-GC-MS技术分析安神药对柏子仁-酸枣仁中的挥发性成分[J]. 中国药师, 2022, 25(6): 1091-1095. https://doi.org/10.19962/j.cnki.issn1008-049X.2022.06.033 |
[25] | 牛明, 张斯琴, 张博, 等. 《网络药理学评价方法指南》解读[J]. 中草药, 2021, 52(14): 4119-4129. |
[26] | Buysse, D.J. (2013) Insomnia. JAMA, 309, 706-716. https://doi.org/10.1001/jama.2013.193 |
[27] | Jiao, X., Yang, S., Yang, Y., Li, J., Sun, H., Zhang, M., et al. (2019) Targeted Sequencing Analysis of PPARG Identifies a Risk Variant Associated with Obstructive Sleep Apnea in Chinese Han Subjects. Sleep and Breathing, 24, 167-174. https://doi.org/10.1007/s11325-019-01855-x |
[28] | 武越, 刘博文, 曹云松, 等. 基于数据挖掘、网络药理学和分子对接法的补肾法治疗失眠的用药规律和机制研究[J/OL]. http://kns.cnki.net/kcms/detail/10.1157.R.20240205.1834.034.html, 2024-04-12. |
[29] | Khan, Z., Nath, N., Rauf, A., Emran, T.B., Mitra, S., Islam, F., et al. (2022) Multifunctional Roles and Pharmacological Potential of β-Sitosterol: Emerging Evidence toward Clinical Applications. Chemico-Biological Interactions, 365, Article 110117. https://doi.org/10.1016/j.cbi.2022.110117 |
[30] | 毛文刚, 郭子妍, 贾文敬, 等. 植物甾醇的酶法修饰与生物转化[J]. 中国生物工程杂志, 2024, 44(4): 112-121. https://doi.org/10.13523/j.cb.2310022, 2024-04-10. |
[31] | Di Petrillo, A., Orrù, G., Fais, A. and Fantini, M.C. (2021) Quercetin and Its Derivates as Antiviral Potentials: A Comprehensive Review. Phytotherapy Research, 36, 266-278. https://doi.org/10.1002/ptr.7309 |
[32] | Al-Sharif, F.M. and El-Kader, S.M.A. (2021) Inflammatory Cytokines and Sleep Parameters Response to Life Style Intervention in Subjects with Obese Chronic Insomnia Syndrome. African Health Sciences, 21, 1223-1229. https://doi.org/10.4314/ahs.v21i3.31 |
[33] | 刘鑫. 基于核受体PPARγ及其共激活因子PGC-1α研究酸枣仁汤对老年慢性快动眼睡眠剥夺模型大鼠中枢SCN昼夜节律及能量代谢的并联调控机制[D]: [硕士学位论文]. 武汉: 湖北中医药大学, 2021. https://doi.org/10.27134/d.cnki.ghbzc.2021.000286 |
[34] | 吴成挺, 张青萍, 吴鹏, 等. 基于信号通路探讨中医药治疗失眠的研究进展[J]. 中医药临床杂志, 2023, 35(7): 1424-1429. https://doi.org/10.16448/j.cjtcm.2023.0738 |
[35] | Oikonomou, G., Altermatt, M., Zhang, R.W., Coughlin, G.M., Montz, C., Gradinaru, V., et al. (2019) The Serotonergic Raphe Promote Sleep in Zebrafish and Mice. Neuron, 103, 686-701. https://doi.org/10.1016/j.neuron.2019.05.038 |
[36] | Matthews, K.A., Dahl, R.E., Owens, J.F., Lee, L. and Hall, M. (2012) Sleep Duration and Insulin Resistance in Healthy Black and White Adolescents. Sleep, 35, 1353-1358. https://doi.org/10.5665/sleep.2112 |
[37] | Llanos, O.L., Galiatsatos, P., Guzmán-Vélez, E., Patil, S.P., Smith, P.L., Magnuson, T., et al. (2016) Pharyngeal Collapsibility during Sleep Is Elevated in Insulin-Resistant Females with Morbid Obesity. European Respiratory Journal, 47, 1718-1726. https://doi.org/10.1183/13993003.00918-2015 |
[38] | Abo-Zaid, O.A., Moawed, F.S., Ismail, E.S. and Farrag, M.A. (2023) β-Sitosterol Attenuates High-Fat Diet-Induced Hepatic Steatosis in Rats by Modulating Lipid Metabolism, Inflammation and ER Stress Pathway. BMC Pharmacology and Toxicology, 24, Article No. 31. https://doi.org/10.1186/s40360-023-00671-0 |
[39] | Tang, X., Yan, T., Wang, S., Liu, Q., Yang, Q., Zhang, Y., et al. (2023) Treatment with β-Sitosterol Ameliorates the Effects of Cerebral Ischemia/Reperfusion Injury by Suppressing Cholesterol Overload, Endoplasmic Reticulum Stress, and Apoptosis. Neural Regeneration Research, 19, 642-649. https://doi.org/10.4103/1673-5374.380904 |
[40] | Jiang, L., Zhao, X., Xu, J., Li, C., Yu, Y., Wang, W., et al. (2019) The Protective Effect of Dietary Phytosterols on Cancer Risk: A Systematic Meta-Analysis. Journal of Oncology, 2019, Article ID: 7479518. https://doi.org/10.1155/2019/7479518 |
[41] | Yuan, L., Zhang, F., Shen, M., Jia, S. and Xie, J. (2019) Phytosterols Suppress Phagocytosis and Inhibit Inflammatory Mediators via ERK Pathway on LPS-Triggered Inflammatory Responses in RAW264.7 Macrophages and the Correlation with Their Structure. Foods, 8, Article 582. https://doi.org/10.3390/foods8110582 |
[42] | Vanmierlo, T., Weing?rtner, O., van der Pol, S., Husche, C., Kerksiek, A., Friedrichs, S., et al. (2012) Dietary Intake of Plant Sterols Stably Increases Plant Sterol Levels in the Murine Brain. Journal of Lipid Research, 53, 726-735. https://doi.org/10.1194/jlr.m017244 |
[43] | Xu, D., Hu, M.-J., Wang, Y.-Q. and Cui, Y.-L. (2019) Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules, 24, Article 1123. https://doi.org/10.3390/molecules24061123 |
[44] | Lira, A.B. and de Sousa Rodrigues, C.F. (2016) Evaluation of Oxidative Stress Markers in Obstructive Sleep Apnea Syndrome and Additional Antioxidant Therapy: A Review Article. Sleep and Breathing, 20, 1155-1160. https://doi.org/10.1007/s11325-016-1367-3 |