|
红景天苷通过抗氧化应激作用抗骨质疏松机制探析
|
Abstract:
随着人口老龄化的增加,骨质疏松症的发病率逐年增加,这将导致因骨质疏松产生的骨折的发生率增加,预计在世界各地从1990的166万年增加到2050的626万。因为相关的高发病率、死亡率和治疗成本,骨质疏松症引起重大的公共卫生全球社会和经济负担,因此,迫切需要找到低成本效益的方法来预防骨质疏松症的发展。红景天是我国传统药用植物,是一种天然植物酚类抗氧化剂,其药物靶点多样,对糖尿病、高原反应、心血管疾病、恶性肿瘤等皆疗效显著。相关报导研究日益增多,但以红景天苷为研究对象,以抗氧化为治疗靶点挖掘并阐释药物通过抗氧化机制治疗骨质疏松症状尚未见相关报导。本文通过对多个数据库包括不限于PubMed、中国国家知识基础设施,国家科技图书馆、中国科技期刊数据库的相关检索,旨在以抗氧化机制为靶点挖掘红景天苷改善骨质疏松的新途径,以期为后者进行下一步临床研究做参阅。
As the population ages, the incidence of osteoporosis is increasing every year, which will lead to an increase in the incidence of fractures arising from osteoporosis, which is projected to increase from 1.66 million in 1990 to 6.26 million in 2050 worldwide. Because of the associated high morbidity, mortality and treatment costs, osteoporosis causes a significant public health global social and economic burden; therefore, there is an urgent need to find cost-effective ways to prevent the development of osteoporosis. Rhodiola rosea, a traditional medicinal plant in China, is a natural plant phenolic antioxidant with a variety of drug targets, which is effective in diabetes mellitus, altitude sickness, cardiovascular diseases, and malignant tumors. Although the number of related studies is increasing, there is no report on the use of Rhodiola rosea glycosides as the research object to explore and explain the antioxidant mechanism of the drug for the treatment of osteoporosis through antioxidant mechanism. In this paper, we searched several databases, including PubMed, China National Knowledge Infrastructure, National Science and Technology Library, and China Science and Technology Journal Database, with the aim of exploring new ways to improve osteoporosis with Rhodiola rosea glycosides by using antioxidant mechanism as the target, so as to make reference to the latter for the next step of the clinical research.
[1] | Chen, G., Wang, C., Wang, J., Yin, S., Gao, H., Xiang, L., et al. (2016) Antiosteoporotic Effect of Icariin in Ovariectomized Rats Is Mediated via the Wnt/β-Catenin Pathway. Experimental and Therapeutic Medicine, 12, 279-287. https://doi.org/10.3892/etm.2016.3333 |
[2] | Harvey, N., Dennison, E. and Cooper, C. (2010) Osteoporosis: Impact on Health and Economics. Nature Reviews Rheumatology, 6, 99-105. https://doi.org/10.1038/nrrheum.2009.260 |
[3] | 云博, 吴景东. 氧化应激与相关疾病及其作用机制[J]. 沈阳医学院学报, 2018, 20(3): 272-276. |
[4] | Xia, T., Lin, L., Zhang, Q., Jiang, Y., Li, C., Liu, X., et al. (2019) Humulus Lupulus L. Extract Prevents Ovariectomy-Induced Osteoporosis in Mice and Regulates Activities of Osteoblasts and Osteoclasts. Chinese Journal of Integrative Medicine, 27, 31-38. https://doi.org/10.1007/s11655-019-2700-z |
[5] | 赖立勇, 徐圣焱, 夏天爽, 蒋益萍, 辛海量. 基于抗氧化机制的中药及其化学成分在骨质疏松中的应用[J]. 海军军医大学学报, 2022, 43(8): 943-950. https://doi.org/10.16781/j.CN31-2187/R.20201547 |
[6] | Xu, W., Liu, X., He, X., Jiang, Y., Zhang, J., Zhang, Q., et al. (2020) Bajitianwan Attenuates D-Galactose-Induced Memory Impairment and Bone Loss through Suppression of Oxidative Stress in Aging Rat Model. Journal of Ethnopharmacology, 261, Article ID: 112992. https://doi.org/10.1016/j.jep.2020.112992 |
[7] | Sun, X., Zhang, J., Guo, Y., Xia, T., Xu, L., Rahmand, K., et al. (2021) Xanthohumol Ameliorates Memory Impairment and Reduces the Deposition of Β-Amyloid in APP/PS1 Mice via Regulating the mTOR/LC3II and Bax/Bcl-2 Signalling Pathways. Journal of Pharmacy and Pharmacology, 73, 1230-1239. https://doi.org/10.1093/jpp/rgab052 |
[8] | Rong, L., Li, Z., Leng, X., Li, H., Ma, Y., Chen, Y., et al. (2020) Salidroside Induces Apoptosis and Protective Autophagy in Human Gastric Cancer AGS Cells through the PI3K/Akt/mTOR Pathway. Biomedicine & Pharmacotherapy, 122, Article ID: 109726. https://doi.org/10.1016/j.biopha.2019.109726 |
[9] | Singh, A., Kukreti, R., Saso, L. and Kukreti, S. (2019) Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules, 24, Article 1583. https://doi.org/10.3390/molecules24081583 |
[10] | Xu, F., Xu, J., Xiong, X. and Deng, Y. (2019) Salidroside Inhibits MAPK, NF-κB, and STAT3 Pathways in Psoriasis-Associated Oxidative Stress via SIRT1 Activation. Redox Report, 24, 70-74. https://doi.org/10.1080/13510002.2019.1658377 |
[11] | 陈鹏, 李杨, 欧阳鹏辉. 胡黄连苷II调节RIP1/RIP3/MLKL信号对地塞米松诱导成骨细胞凋亡的影响[J]. 中国骨质疏松杂志, 2024, 30(5): 662-667+683. |
[12] | 钟赣生. 中药学[M]. 第4版. 北京: 中国中医药出版社, 2016: 379-380. |
[13] | 章细华, 朱成童. 老年性骨质疏松疼痛采用益肾坚骨汤治疗的临床效果分析[J]. 当代医学, 2015, 21(35): 154-155. |
[14] | 肖方骏, 陈树东, 栾继耀, 侯宇, 何坤, 林定坤. 红景天干预骨质疏松症: 网络药理学解释的作用机制[J]. 中国 组织工程研究, 2021(25): 772-778. |
[15] | Li, F., Li, Q., Huang, X., Wang, Y., Ge, C., Qi, Y., et al. (2017) Psoralen Stimulates Osteoblast Proliferation through the Activation of Nuclear Factor-κB-Mitogen-Activated Protein Kinase Signaling. Experimental and Therapeutic Medicine, 14, 2385-2391. https://doi.org/10.3892/etm.2017.4771 |
[16] | 范小春. 独活寄生汤加减治疗骨质疏松症腰背痛56例临床观察[J]. 中医临床研究, 2020(12): 109-110. |
[17] | Zhang, Q., Zhao, L., Shen, Y., He, Y., Cheng, G., Yin, M., et al. (2019) Curculigoside Protects against Excess-Iron-Induced Bone Loss by Attenuating Akt-Foxo1-Dependent Oxidative Damage to Mice and Osteoblastic MC3T3-E1 Cells. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 9281481. https://doi.org/10.1155/2019/9281481 |
[18] | 郁桦, 常萍, 陈蓓旖, 韦蓉, 马丽娜, 牛诗捷, 等. 大豆异黄酮和牛初乳复合制剂对去卵巢大鼠骨质疏松症的改善及抗氧化作用[J]. 食品工业科技, 2019, 40(15): 284-291. |
[19] | 周佳纬, 黄琦. 皂苷类药物通过Nrf2/ARE信号通路发挥抗氧化应激作用的研究进展[J]. 中华中医药学刊, 2016, 34(11): 2745-2747 |
[20] | 蒋益萍, 夏天爽, 张志伟, 秦路平, 张巧艳, 薛黎明. 淫羊藿和仙茅有效部位配伍防治骨质疏松的代谢组学研究[J]. 药学服务与研究, 2018, 18(5): 326-331. |
[21] | Yin, Y., Liu, D. and Tian, D. (2018) Salidroside Prevents Hydroperoxideinduced Oxidative Stress and Apoptosis in Retinal Pigment Epithelium Cells. Experimental and Therapeutic Medicine, 16, 2363-2368. https://doi.org/10.3892/etm.2018.6494 |
[22] | 宁金月, 贾玉凤, 王燕, 刘扬, 刘一栋. 自拟中药壮肾补骨方辅助治疗绝经后骨质疏松症的疗效及血清性激素和骨代谢指标变化[J]. 山东医药, 2022, 62(29): 74-77. |