全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于企业网络招聘的人才需求文本挖掘——以统计学为例
Talent Demand Text Mining Based on Enterprise Online Recruitment—Taking Statistics as an Example

DOI: 10.12677/sa.2024.133097, PP. 954-964

Keywords: 网络招聘,统计学,人才需求,文本挖掘,LDA模型,文本聚类
Online Recruitment
, Statistics, Talent Demand, Text Mining, LDA Model, Text Clustering

Full-Text   Cite this paper   Add to My Lib

Abstract:

大数据时代的到来,带来了数据形式和数据结构的革新,也给统计学以收集、整理和分析数据为基础的专业创造了有利的发展机会。但随着互联网技术的迅速发展,如人工智能、金融科技、大数据分析等新兴专业也不断涌现,这也给传统的统计学专业人才培养和市场需求造成一定的冲击。本文通过数据挖掘方法分析企业网络招聘文本,理清统计专业人才需求特征,从而为学生求职和高校教学提供依据。研究分为两个阶段:数据收集与预处理和深入挖掘招聘信息。结果显示,企业对应聘者的能力要求分为数据分析、协同沟通和生产管理三类;岗位类型分为业务类和技术类。
The arrival of the big data era has brought about innovations in data forms and structures, and has also created favorable development opportunities for statistics professionals based on data collection, organization, and analysis. However, with the rapid development of Internet technology, emerging majors such as artificial intelligence, financial technology and big data analysis are also emerging, which also has a certain impact on the training of traditional statistics professionals and market demand. This article analyzes enterprise online recruitment texts through data mining methods, clarifies the characteristics of professional talent demand in statistics, and provides a basis for student job seeking and university teaching. The research is divided into two stages: Data collection and preprocessing, and in-depth exploration of recruitment information. The results show that the ability requirements of companies for job applicants can be divided into three categories: data analysis, collaborative communication, and production management; job types are divided into business and technical categories.

References

[1]  卫露楠. 基于文本挖掘的统计专业人才需求分析[D]: [硕士学位论文]. 桂林: 广西师范大学, 2022.
[2]  Cullen, J. (2004) LIS Labour Market Research: Implications for Management Development. Library Management, 25, 138-145.
https://doi.org/10.1108/01435120410522352
[3]  T Smith, D. and Ali, A. (2014) Analyzing Computer Programming Job Trend Using Web Data Mining. Issues in Informing Science and Information Technology, 11, 203-214.
https://doi.org/10.28945/1989
[4]  孙学军, 齐俊景, 阚曲欣. 基于招聘数据挖掘的高职人才培养方案构建研究——以物流类专业为例[J]. 职教论坛, 2019(8): 159-164.
[5]  Shenoy, V. and Aithal, P.S. (2018) Literature Review on Primary Organizational Recruitment Sources. International Journal of Management, Technology, and Social Sciences, 3, 37-58.
https://doi.org/10.47992/ijmts.2581.6012.0035
[6]  Turrell, A., Speigner, B., Djumalieva, J., et al. (2019) Transforming Naturally Occurring Text Data into Economic Statistics: The Case of Online Job Vacancy Postings. Social Science Electronic Publishing.
[7]  Litecky, C., Aken, A., Ahmad, A. and Nelson, H.J. (2010) Mining for Computing Jobs. IEEE Software, 27, 78-85.
https://doi.org/10.1109/ms.2009.150
[8]  俞琰, 陈磊, 姜金德, 等. 融合论文关键词知识的专利术语抽取方法[J]. 图书情报工作, 2020, 64(14): 104-111.
[9]  郑思雨. 网络招聘信息的数据挖掘研究[D]: [硕士学位论文]. 杭州: 杭州电子科技大学, 2020.
[10]  Blei, D.M., Ng, A.Y. and Jordan, M.I. (2003) Latent Dirichlet Allocation. Journal of Machine Learning Research, 3, 993-1022.
[11]  董韶琦, 郑静. 基于LDA主题模型的杭州亚运会微博话题分析[J]. 统计学与应用, 2023, 12(4): 833-842.
[12]  唐诗. 基于文本挖掘的豆瓣电影评论的LDA主题模型分析——以电影《让子弹飞》为例[J]. 新闻传播科学, 2024, 12(1): 23-28.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133