全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于百度指数的突发事件网络舆情预测分析
Prediction and Analysis of Network Public Opinion in Emergencies Based on Baidu Index

DOI: 10.12677/sa.2024.133094, PP. 923-933

Keywords: 新冠疫情,网络舆情,支持向量机,ARIMA,预测模型
COVID-19
, Online Public Opinion, Support Vector Machine, ARIMA, Prediction Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

如何在公共卫生事件发生时,正确引导和管理网络舆情,形成积极健康的舆情氛围,一直是相关部门需要关注的问题。本文以上海新冠疫情为对象,爬取网络舆情相关的百度搜索指数样本数据(2022.11.10~2023.01.31)。首先,依据舆情生命周期理论,将该阶段上海新冠疫情网络舆情发展划分为萌芽期–成长期–成熟期–衰退期,对不同时期网络舆情的传播特点进行了定性分析,并给出各阶段舆情管理建议。然后,考虑到样本数据的非线性和非平稳的特点,分别利用最小二乘支持向量机(LSSVM)和自回归移动平均模型(ARIMA)进行预测。最后,将LSSVM和ARIMA两个模型结果赋以适当权重进行组合预测,相较于之前单一模型预测,预测精度明显提升。本文对突发公共事件网络舆情进行预测分析,了解舆情发展趋势,以期为相关部门引导和管控网络舆情提供一定的参考依据。
How to correctly guide and manage online public opinion in public health emergencies to foster a positive and healthy atmosphere has always been a concern for relevant departments. This article focuses on the COVID-19 epidemic in Shanghai and crawls sample data from the Baidu search index related to online public opinion, spanning from November 10, 2022 to January 31, 2023. Firstly, based on the life cycle theory of public opinion, the article classifies the development of online public opinion into four stages: Germination, growth, maturity, and decline. A qualitative analysis of the propagation characteristics of online public opinion in these different periods is conducted, followed by suggestions for public opinion management in each stage. Then, considering the nonlinear and non-stationary characteristics of the sample data, the least squares support vector machine (LSSVM) and autoregressive moving average model (ARIMA) are utilized for prediction. Finally, the results of the LSSVM and ARIMA models are combined with appropriate weights to enhance prediction accuracy, significantly outperforming previous single model predictions. By predicting and analyzing the development trend of public opinion during sudden public events, this article aims to provide a reference for relevant departments in guiding and controlling online public opinion.

References

[1]  雷园. 突发公共卫生事件网络舆情传播效果的影响因素分析[D]: [硕士学位论文]. 北京: 北京化工大学, 2022.
[2]  田红梅. 突发公共卫生事件下网络舆情传播机理研究[D]: [硕士学位论文]. 石家庄: 河北科技大学, 2022.
[3]  郭圳凝, 张筱荣. 突发公共卫生事件中网络舆情的整体性治理研究[J]. 安徽理工大学学报(社会科学版), 2022, 24(1): 19-29.
[4]  朱家安. 突发公共卫生事件下的网络舆论与社会治理[J]. 新闻传播, 2022(1): 40-41.
[5]  王旭, 孙瑞英. 基于SNA的突发事件网络舆情传播研究——以“魏则西事件”为例[J]. 情报科学, 2017, 35(3): 87-92.
[6]  Singh, S., Parmar, K.S., Kumar, J., et al. (2020) Development of New Hybrid Model of Discrete Wavelet Decomposition and Autoregressive Integrated Moving Average (ARIMA) Models in Application to One Month Forecast the Casualties Cases of COVID-19. Chaos, Solitons & Fractals, 135, Article 109866.
https://doi.org/10.1016/j.chaos.2020.109866
[7]  郝春艳. 基于SD的突发事件网络舆情政府应对能力研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2021.
[8]  牟冬梅, 靳春妍, 邵琦. 基于情感分析的突发公共卫生事件网络舆情热度预测模型仿真[J]. 现代情报, 2021, 41(10): 59-66.
[9]  靳春妍. 基于情感分析的突发公共卫生事件网络舆情热度预测研究[D]: [硕士学位论文]. 长春: 吉林大学, 2021.
[10]  程铁军, 王曼, 黄宝凤, 冯兰萍. 基于CEEMDAN-BP模型的突发事件网络舆情预测研究[J]. 数据分析与知识发现, 2021, 5(11): 59-67.
[11]  王启云, 郑中团. CEEMDAN-HURST算法在新冠疫情预测中的应用[J]. 计算机工程与应用, 2023, 59(7): 261-268.
[12]  曾杰, 张华. 基于最小二乘支持向量机的风速预测模型[J]. 电网技术, 2009, 33(18): 144-147.
[13]  王凯, 侯著荣, 王聪丽. 基于交叉验证SVM的网络入侵检测[J]. 测试技术学报, 2010, 24(5): 419-423.
[14]  李琨, 韩莹, 黄海礁. 基于IBH-LSSVM的混沌时间序列预测及其在抽油井动液面短期预测中的应用[J]. 信息与控制, 2016, 45(2): 241-247, 256.
[15]  Yang, Y.F., Qin, Y., Jia, L.M. and Dong, H.H. (2016) Traffic Safety Region Estimation Based on SFS-PCA-LSSVM: An Application to Highway Crash Risk Evaluation. International Journal of Software Engineering and Knowledge Engineering, 26, 1555-1570.
https://doi.org/10.1142/S0218194016400179
[16]  Gao, S.Z., Li, T.C. and Zhang, Y.M. (2020) Rolling Bearing Fault Diagnosis of PSO-LSSVM Based on CEEMD Entropy Fusion. Transactions of the Canadian Society for Mechanical Engineering, 44, 405-418.
https://doi.org/10.1139/tcsme-2019-0114
[17]  白鹏, 张喜斌, 张斌, 等. 支持向量机理论及工程应用实例[M]. 西安: 西安电子科技大学出版社, 2008: 14-15.
[18]  程铁军, 王曼. 基于变权组合的突发事件网络舆情趋势预测[J]. 计算机科学, 2021, 48(S1): 190-195+202.
[19]  杨茂青, 谢健民, 秦琴, 等. 基于RF算法的突发事件网络舆情演化预测分析[J]. 情报科学, 2019, 37(7): 95-100.
[20]  杜洪涛, 王君泽, 李婕. 基于多案例的突发事件网络舆情演化模式研究[J]. 情报学报, 2017, 36(10): 1038-1049.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133