|
Material Sciences 2024
环氧树脂表面电荷积聚与消散特性研究
|
Abstract:
环氧树脂表面电荷积聚与消散特性分析由于考虑不全面,未从多个方向对其进行深入分析,仅分析伽马射线辐射量等情况下的特征,导致分析存在局限性,因此,提出环氧树脂表面电荷积聚与消散特性研究。该研究从电极接触方式、大气压介质阻挡放电和伽马射线辐射三种条件下研究环氧树脂表面电荷积聚与消散特性,其中采用接触和不接触两种电极分布方式连接环氧树脂,测试电极分布方式对于环氧树脂表面电荷分布影响;在大气压介质阻挡放电条件下,使用等离子体放电装置处理环氧树脂,分析处理前后环氧树脂表面电荷分布;测试工作环境中伽马射线辐射量对于环氧树脂表面电荷积聚与消散特性的影响。试验结果显示采用接触电极分布方式,环氧树脂表面电荷积聚量更少,到达了?4.8 pC/mm2,电荷消散更快;采用等离子体放电装置,实现大气压介质阻挡放电,其中经过9 min等离子体发生装置处理后,环氧树脂表面电荷密度降低更明显,此时的电荷密度仅为5.5 pC/mm2,抑制环氧树脂表面电荷积聚,加快表面电荷消散。环氧树脂所处环境中,在辐射量达到1000 kGy时,正负电荷密度分别由68.9 pC/mm2和80.1 pC/mm2降到36.9 pC/mm2和47.2 pC/mm2,伽马射线辐射量越大,环氧树脂表面电荷积聚越少,电荷消散越多。
Due to incomplete consideration, the analysis of surface charge accumulation and dissipation characteristics of epoxy resin did not carry out in-depth analysis from multiple directions, and only analyzed the characteristics in the case of gamma ray radiation, leading to limitations in the analysis. Therefore, the study of surface charge accumulation and dissipation characteristics of epoxy resin was proposed. This study studied the surface charge accumulation and dissipation characteristics of epoxy resin under three conditions: electrode contact mode, dielectric barrier discharge at atmospheric pressure and gamma-ray radiation. Two electrode distribution modes of contact and non-contact were used to connect epoxy resin, and the influence of electrode distribution mode on the surface charge distribution of epoxy resin was tested. Under the condition of dielectric barrier discharge at atmospheric pressure, epoxy resin was treated with plasma discharge device, and the surface charge distribution of epoxy resin before and after treatment was analyzed. The effect of gamma ray radiation on the surface charge accumulation and dissipation characteristics of epoxy resin in working environment was tested. The test results show that the charge accumulation on the surface of epoxy resin is less, reaching ?4.8 pC/mm2, and the charge dissipation is faster. Plasma discharge device was used to achieve dielectric barrier discharge at atmospheric pressure. After 9 min plasma generation device treatment, the surface charge density of epoxy resin decreased more significantly, and the charge density at this time was only 5.5 pC/mm2, which inhibited the surface charge accumulation of epoxy resin and accelerated the surface charge dissipation. In the environment of epoxy resin, when the radiation amount reaches 1000kGy, the positive and negative charge density decreases from 68.9 pC/mm2 and 80.1 pC/mm2 to 36.9 pC/mm2
[1] | 闫纪源, 梁贵书, 段祺君, 等. 等离子体表面阶跃型梯度硅沉积对环氧树脂闪络性能的影响[J]. 电工技术学报, 2022, 37(9): 2377-2387. |
[2] | 许航, 司马文霞, 孙魄韬, 等. SF6气氛中表面电荷对环氧树脂气固界面电子倍增过程的影响机制[J]. 高电压技术, 2022, 48(5): 1716-1725. |
[3] | 张贵新, 李大雨, 王天宇. 交流电压下气固界面电荷积聚与放电特性研究进展[J]. 电工技术学报, 2022, 37(15): 3876-3887. |
[4] | 唐蓝天, 徐浩, 严佳, 等. 基于DFT的液氧相容改性环氧树脂的化学特性研究[J]. 功能材料, 2023, 54(6): 6028-6033. |
[5] | 何友辉, 陈洪斌, 李飞, 宋法伦. 不同氮离子注入参数对聚四氟乙烯表面电荷积聚消散特性的影响[J]. 强激光与粒子束, 2022, 34(12): 123-135. |
[6] | 谢子豪, 李敏, 宋岩泽, 等. 温度对环氧树脂气——固界面电荷积聚的影响研究[J]. 高压电器, 2023, 59(9): 60-66+89. |
[7] | 谢庆, 吕天舒, 宋岩泽, 等. 交直流切换下环氧树脂表面电场分布特性的仿真研究[J]. 高压电器, 2022, 58(11): 24-30. |
[8] | 谢庆, 张玉锦, 段祺君, 等. 氟化改性石墨烯纳米片对环氧树脂复合材料沿面耐压性能的影响[J]. 中国电机工程学报, 2023, 43(16): 6525-6535. |
[9] | 张跃, 苏淮北, 何明鹏, 等. 工频双极性方波电场下环氧树脂的空间电荷特性[J]. 中国电机工程学报, 2023, 43(13): 5294-5302. |
[10] | 胡伯立, 潘成, 潘子君, 叶宇涵, 唐炬. 电极接触方式对环氧树脂表面电荷积聚与消散特性的影响[J]. 高电压技术, 2023, 49(1): 321-330. |
[11] | 李志辉, 解曾祺, 李庆民, 董紫薇, 王忠东. 多巴胺接枝的纳米氮化硼改性环氧树脂绝缘表面电荷高频消散特性[J]. 电工技术学报, 2023, 38(5): 1116-1128. |
[12] | 宋岩泽, 梁贵书, 冉慧娟, 等. 等离子体处理调控表面电导率提高环氧树脂绝缘性能的研究[J]. 电工技术学报, 2023, 38(15): 3984-3998. |
[13] | 董俊豪, 陈俊鸿, 李金殊, 等. 直流电压下C4F7N/CO2混合气体中环氧复合绝缘子表面电荷积聚特性[J]. 中国电机工程学报, 2022, 42(17): 6521-6533. |
[14] | 李林虎, 唐修检, 王龙, 何东昱, 刘谦, 谭俊. SiC陶瓷表面增韧用环氧树脂基增韧剂的制备与性能研究[J]. 硅酸盐通报, 2022, 41(1): 266-276. |
[15] | 税涛, 李珍, 向东, 等. 玄武岩纤维/环氧树脂复合材料的界面强化与力学性能研究[J]. 塑料工业, 2023, 51(5): 95-101+154. |