|
Material Sciences 2024
EUV掩模白板缺陷的反射近场模拟研究
|
Abstract:
极紫外光刻掩模白板是制造光刻图形的基础,随着极紫外光刻技术的不断发展,工艺要求逐渐向“零缺陷”掩模标准推进。在7 nm及以下节点,缺陷对于极紫外掩模白板良率的影响不可忽视。本文采用时域有限差分(Finite-Difference Time-Domain, FDTD)方法仿真研究了反射近场强度分布的特征,并仿真得到了不同尺寸的缺陷在多层膜的内部纵向深度对相位的影响。
With the development of extreme ultra-violet lithography technology, the process requirement is gradually advancing to the standard of “Zero Defect” mask. The effect of the defect on the yield of EUV mask blank can not be neglected at the nodes below 7 nm. In this paper, the Finite-Difference Time-Domain (FDTD) method is used to simulate the near-field intensity distribution of the reflected, and the phase influence of defect size and position in the multilayers is obtained.
[1] | Stearns, D.G., Mirkarimi, P.B. and Spiller, E. (2004) Localized Defects in Multilayer Coatings. Thin Solid Films, 446, 37-49. https://doi.org/10.1016/s0040-6090(03)01285-9 |
[2] | Clifford, C.H. and Neureuther, A.R. (2007) Fast Simulation of Buried EUV Mask Defect Interaction with Absorber Features. SPIE Proceedings, 6517, Article ID: 65170A. https://doi.org/10.1117/12.711173 |
[3] | Kim, S.K. (2016) Extreme Ultraviolet Multilayer Defect Compensation in Computational Lithography. Journal of Nanoscience and Nanotechnology, 16, 5415-5419. |
[4] | Evanschitzky, P. and Erdmann, A. (2007) Fast near Field Simulation of Optical and EUV Masks Using the Waveguide Method. 23rd European Mask and Lithography Conference, Grenoble, 22-25 January 2007, 1-12. https://doi.org/10.1117/12.736978 |
[5] | Sambale, C., Schmoeller, T., Erdmann, A., Evanschitzky, P. and Kalus, C.K. (2003) Rigorous Simulation of Defective EUV Multilayer Masks. SPIE Proceedings, 5256, 1239-1248. https://doi.org/10.1117/12.518049 |
[6] | Gullikson, E.M., Cerjan, C., Stearns, D.G., Mirkarimi, P.B. and Sweeney, D.W. (2002) Practical Approach for Modeling Extreme Ultraviolet Lithography Mask Defects. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 20, 81-86. https://doi.org/10.1116/1.1428269 |
[7] | Lam, M.C. and Neureuther, A.R. (2006) Modeling Methodologies and Defect Printability Maps for Buried Defects in EUV Mask Blanks. SPIE Proceedings, 6165, 100-111. https://doi.org/10.1117/12.656744 |
[8] | 李冠楠, 刘立拓, 周维虎, 等. 缺陷对极紫外掩模多层结构反射场的扰动研究[J]. 半导体光电, 2020, 41(2): 217-222. https://doi.org/10.16818/j.issn1001-5868.2020.02.014 |
[9] | 刘晓雷, 李思坤, 王向朝. 基于等效膜层法的极紫外光刻含缺陷掩模多层膜仿真模型[J]. 光学学报, 2015, 36(6): 263-271. https://doi.org/10.3788/AOS201535.0622005 |
[10] | 张恒, 李思坤, 王向朝, 等. 基于机器学习校正的极紫外光刻含缺陷掩模仿真方法[J]. 光学学报, 2018, 38(12): 295-302. https://doi.org/10.3788/AOS201838.1222002 |
[11] | 韦亚一. 计算光刻与版图优化[J]. 中国信息化, 2021(1): 封3. |
[12] | Chang, C., Chang, V.S., Pan, K.H., Lai, K.T., Lu, J.H., Ng, J.A., et al. (2022) Critical Process Features Enabling Aggressive Contacted Gate Pitch Scaling for 3nm CMOS Technology and Beyond. 2022 International Electron Devices Meeting (IEDM), San Francisco, 3-7 December 2022, 27.1.1-27.1.4. https://doi.org/10.1109/iedm45625.2022.10019565 |
[13] | Wu, S., Chang, C.H., Chiang, M.C., Lin, C.Y., Liaw, J.J., Cheng, J.Y., et al. (2022) A 3nm CMOS Finflex? Platform Technology with Enhanced Power Efficiency and Performance for Mobile Soc and High Performance Computing Applications. 2022 International Electron Devices Meeting (IEDM), San Francisco, 3-7 December 2022, 27.5.1-27.5.4. https://doi.org/10.1109/iedm45625.2022.10019498 |
[14] | Vernon, S.P., Kearney, P.A., Tong, W.M., Prisbrey, S.T., Larson, C.C., Moore, C.E., et al. (1998) Masks for Extreme Ultraviolet Lithography. 18th Annual BACUS Symposium on Photomask Technology and Management, 1 September 1998, Redwood City, CA, 184-193. https://doi.org/10.1117/12.332826 |
[15] | Pistor, T., Deng, Y. and Neureuther, A. (2000) Extreme Ultraviolet Mask Defect Simulation: Low-Profile Defects. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 18, 2926-2929. https://doi.org/10.1116/1.1324616 |
[16] | Brukman, M.J., Deng, Y. and Neureuther, A.R. (2000) Simulation of EUV Multilayer Mirror Buried Defects. SPIE Proceedings, 3997, 799-806. https://doi.org/10.1117/12.390121 |
[17] | Deng, Y., La Fontaine, B. and Neureuther, A.R. (2002) Performance of Repaired Defects and Attpsm in EUV Multilayer Masks. 22nd Annual BACUS Symposium on Photomask Technology, Monterey, CA, United States, 27 December 2002, 418-425. https://doi.org/10.1117/12.467896 |
[18] | Ito, M., Ogawa, T., Otaki, K., Nishiyama, I., Okazaki, S. and Terasawa, T. (2001) Simulation of Multilayer Defects in Extreme Ultraviolet Masks. Japanese Journal of Applied Physics, 40, Article No. 2549. https://doi.org/10.1143/jjap.40.2549 |
[19] | Besacier, M., Schiavone, P., Farys, V. and Smaali, R. (2005) Modeling of the Influence of the Defect Position on the Reflected Intensity in EUV Mask. SPIE Proceedings, 5751, 629-639. https://doi.org/10.1117/12.598415 |
[20] | Erdmann, A. (2021) Optical and EUV Lithography: A Modeling Perspective. SPIE. https://doi.org/10.1117/3.2576902 |
[21] | Erdmann, A., Evanschitzky, P., Bret, T. and Jonckheere, R. (2012) Analysis of EUV Mask Multilayer Defect Printing Characteristics. Extreme Ultraviolet (EUV) Lithography III, San Jose, California, 20 March 2008. https://doi.org/10.1117/12.916411 |
[22] | Clifford, C.H. and Neureuther, A.R. (2008) Smoothing Based Fast Model for Images of Isolated Buried EUV Multilayer Defects. Emerging Lithographic Technologies XII, 20 March 2008. https://doi.org/10.1117/12.771530 |
[23] | Huh, S., Kearney, P., Wurm, S., Goodwin, F., Han, H., Goldberg, K., et al. (2009) EUV Actinic Defect Inspection and Defect Printability at the Sub-32-nm Half-Pitch. 25th European Mask and Lithography Conference, Dresden, 12-15 January 2009. https://doi.org/10.1117/12.835196 |