All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Biomimetic Infiltrating Surface Construction Based on Micro and Nano Structures

DOI: 10.4236/msce.2024.126007, PP. 83-91

Keywords: Lab-on-a-Chip, Magnetic Nanoparticles, Biosensors, Microfluidic

Full-Text   Cite this paper   Add to My Lib

Abstract:

Microfluidic chips hold significant potential for applications in various fields, such as biological analysis, chemical separation, and drug screening. Here, we draw inspiration from the natural ability of aquatic plants to capture different substances in streams, focusing on the design and fabrication of surfaces with micron and nano-scale structures to mimic the wetting phenomenon observed in nature, thereby achieving the capture and separation of specific substances. This paper reports on the self-assembly of magnetic nanoparticles, the preparation of flexible magnetic nano-chains, and the modification of microfluidic chip surfaces, providing a novel perspective and approach to microfluidic chip technology.

References

[1]  Zhang, C., Liu, T., Gao, J., Su, Y. and Shi, C. (2010) Recent Development and Application of Magnetic Nanoparticles for Cell Labeling and Imaging. Mini-Reviews in Medicinal Chemistry, 10, 194-203. https://doi.org/10.2174/138955710791185073
[2]  Kolosnjaj-Tabi, J., Wil-helm, C., Clément, O. and Gazeau, F. (2013) Cell Labeling with Magnetic Nanoparticles: Opportunity for Magnetic Cell Imaging and Cell Manipulation. Journal of Nanobiotechnology, 11, S7. https://doi.org/10.1186/1477-3155-11-s1-s7
[3]  Luo, W., Cui, Q., Fang, K., Chen, K., Ma, H. and Guan, J. (2018) Responsive Hydrogel-Based Photonic Nanochains for Microenvironment Sensing and Imaging in Real Time and High Resolution. Nano Letters, 20, 803-811. https://doi.org/10.1021/acs.nanolett.7b04218
[4]  Oberdick, S.D., Jordanova, K.V., Lundstrom, J.T., Parigi, G., Poorman, M.E., Zabow, G., et al. (2023) Iron Oxide Nanoparticles as Positive T1 Contrast Agents for Low-Field Magnetic Resonance Imaging at 64 mT. Scientific Reports, 13, Article No. 11520. https://doi.org/10.1038/s41598-023-38222-6
[5]  Khizar, S., Ben Halima, H., Ahmad, N.M., Zine, N., Errachid, A. and Elaissari, A. (2020) Magnetic Nanoparticles in Microfluidic and Sensing: From Transport to Detection. Electrophoresis, 41, 1206-1224. https://doi.org/10.1002/elps.201900377
[6]  Materón, E.M., Miyazaki, C.M., Carr, O., Joshi, N., Picciani, P.H.S., Dalmaschio, C.J., et al. (2021) Magnetic Nanoparticles in Biomedical Applications: A Review. Applied Surface Science Advances, 6, Article ID: 100163. https://doi.org/10.1016/j.apsadv.2021.100163
[7]  Zhang, Y., Zhang, F., Song, Y., Shen, X., Bu, F., Su, D., et al. (2023) Interfacial Polymerization Produced Magnetic Particles with Nano-Filopodia for Highly Accurate Liquid Biopsy in the PSA Gray Zone. Advanced Materials, 35, Article ID: 2303821. https://doi.org/10.1002/adma.202303821
[8]  Ebadi, M., Bullo, S., Buskara, K., Hussein, M.Z., Fakurazi, S. and Pastorin, G. (2020) Release of a Liver Anticancer Drug, Sorafenib from Its PVA/LDH- and PEG/LDH-Coated Iron Oxide Nanoparticles for Drug Delivery Applications. Scientific Reports, 10, Article No. 21521. https://doi.org/10.1038/s41598-020-76504-5
[9]  Al-Obaidy, R., Haider, A.J., Al-Musawi, S. and Arsad, N. (2023) Targeted Delivery of Paclitaxel Drug Using Polymer-Coated Magnetic Nanoparticles for Fibrosarcoma Therapy: In Vitro and in Vivo Studies. Scientific Reports, 13, Article No. 3180. https://doi.org/10.1038/s41598-023-30221-x
[10]  Chen, J., Ren, T., Xie, L., Hu, H., Li, X., Maitusong, M., et al. (2024) Enhancing Aortic Valve Drug Delivery with PAR2-Targeting Magnetic Nano-Cargoes for Calcification Alleviation. Nature Communications, 15, Article No. 557. https://doi.org/10.1038/s41467-024-44726-0
[11]  Monteserín, M., Larumbe, S., Martínez, A.V., Burgui, S. and Francisco Martín, L. (2021) Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. Journal of Nanoscience and Nanotechnology, 21, 2705-2741. https://doi.org/10.1166/jnn.2021.19062
[12]  Nam, J., Thaxton, C.S. and Mirkin, C.A. (2003) Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins. Science, 301, 1884-1886. https://doi.org/10.1126/science.1088755
[13]  Nabaei, V., Chandrawati, R. and Heidari, H. (2018) Magnetic Biosensors: Modelling and Simulation. Biosensors and Bioelectronics, 103, 69-86. https://doi.org/10.1016/j.bios.2017.12.023
[14]  Cheng, J., Zhu, N., Zhang, Y., Yu, Y., Kang, K., Yi, Q., et al. (2022) Hedgehog-Inspired Immunomagnetic Beads for High-Efficient Capture and Release of Exosomes. Journal of Materials Chemistry B, 10, 4059-4069. https://doi.org/10.1039/d2tb00226d
[15]  Gagnon, P., Toh, P. and Lee, J. (2014) High Productivity Purification of Immunoglobulin G Monoclonal Antibodies on Starch-Coated Magnetic Nanoparticles by Steric Exclusion of Polyethylene Glycol. Journal of Chromatography A, 1324, 171-180. https://doi.org/10.1016/j.chroma.2013.11.039
[16]  Jauregui, R., Srinivasan, S., Vojtech, L.N., Gammill, H.S., Chiu, D.T., Hladik, F., et al. (2018) Temperature-Responsive Magnetic Nanoparticles for Enabling Affinity Separation of Extracellular Vesicles. ACS Applied Materials & Interfaces, 10, 33847-33856. https://doi.org/10.1021/acsami.8b09751
[17]  Eivazzadeh-Keihan, R., Bahreinizad, H., Amiri, Z., Aliabadi, H.A.M., Salimi-Bani, M., Nakisa, A., et al. (2021) Functionalized Magnetic Nanoparticles for the Separation and Purification of Proteins and Peptides. TrAC Trends in Analytical Chemistry, 141, Article ID: 116291. https://doi.org/10.1016/j.trac.2021.116291
[18]  LaConte, L., Nitin, N. and Bao, G. (2005) Magnetic Nanoparticle Probes. Materials Today, 8, 32-38. https://doi.org/10.1016/s1369-7021(05)00893-x
[19]  Akbarzadeh, A., Samiei, M. and Davaran, S. (2012) Magnetic Nanoparticles: Preparation, Physical Properties, and Applications in Biomedicine. Nanoscale Research Letters, 7, Article No. 144. https://doi.org/10.1186/1556-276x-7-144
[20]  Deng, H., Li, X., Peng, Q., Wang, X., Chen, J. and Li, Y. (2005) Monodisperse Magnetic Single-Crystal Ferrite Microspheres. Angewandte Chemie International Edition, 44, 2782-2785. https://doi.org/10.1002/anie.200462551
[21]  Li, Y., Church, J.S., Woodhead, A.L. and Moussa, F. (2010) Preparation and Characterization of Silica Coated Iron Oxide Magnetic Nano-Particles. Spectrochimica Acta Part A: Molecular and Bio-molecular Spectroscopy, 76, 484-489. https://doi.org/10.1016/j.saa.2010.04.004
[22]  Huynh, K. and Partch, C.L. (2015) Analysis of Protein Stability and Ligand Interactions by Thermal Shift Assay. Current Protocols in Protein Science, 79, 28.9.1-28.9.14. https://doi.org/10.1002/0471140864.ps2809s79
[23]  Townsend, J., Burtovyy, R., Galabura, Y. and Luzinov, I. (2014) Flexible Chains of Ferromagnetic Nanoparticles. ACS Nano, 8, 6970-6978. https://doi.org/10.1021/nn501787v
[24]  Capsoni, M. (2016) On-Surface Self-Assembly and Characterization of a Macromolecular Charge Transfer Complex by Scanning Tunneling Microscopy and Spectroscopy. Thesis/Dissertation, University of British Columbia. https://api.semanticscholar.org/CorpusID:139164539
[25]  Pokhrel, P., Jha, S. and Giri, B. (2020) Selection of Appropriate Protein Assay Method for a Paper Microfluidics Platform. Practical Laboratory Medicine, 21, e00166. https://doi.org/10.1016/j.plabm.2020.e00166

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133